Answer:
(a) Force must be grater than 283.87 N
(B) Force will be equal to 193.945 N
Explanation:
We have given mass of the crate m = 49.6 kg
Acceleration due to gravity 
Coefficient of static friction 
Coefficient of kinetic friction 
(a) Static friction force is given by 
So to just start the crate moving we have to apply more force than 283.87 N
(B) This force will be equal to kinetic friction force
We know that kinetic friction force is given by 
Answer:
3
Explanation:
it's too because on you measuring mass of something
Given speed and the distance that must be covered, the time it will take the ultraviolet light to reach the earth is 3.7 × 10⁴ hours.
<h3>
What is Speed?</h3>
Speed is simply referred to as distance traveled per unit time.
Mathematically, Speed = Distance ÷ time.
Given the data in the question;
- Speed of the Ultraviolet light c = 3.0 × 10⁸m/s = 1.08 × 10⁹km/h
- Distance it must cover d = 4.0 × 10¹³km
We substitute our given values into the expression above.
Speed = Distance ÷ time
1.08 × 10⁹km/h = 4.0 × 10¹³km ÷ t
t = 4.0 × 10¹³km ÷ 1.08 × 10⁹km/h
t = 3.7 × 10⁴ hrs
Therefore, given speed and the distance that must be covered, the time it will take the ultraviolet light to reach the earth is 3.7 × 10⁴ hours.
Learn more about speed here: brainly.com/question/7359669
#SPJ4
Answer:
38.3 m/s
Explanation:
To find vertical component of initial velocity, you'd have to use sine ratio:

is vertical component of initial velocity and
is initial velocity given which is 50 m/s.
A stone is projected at an angle of 50 degrees so
= 50°. Substitute in the formula:

Therefore, the vertical component of initial velocity is approximately 38.3 m/s
(The picture is also attached for visual reference!)