Answer:
The minimum speed required is 5.7395km/s.
Explanation:
To escape earth, the kinetic energy of the asteroid must be greater or equal to its gravitational potential energy:

or

where
is the mass of the asteroid,
is its distance form earth's center,
is the mass of the earth, and
is the gravitational constant.
Solving for
we get:

putting in numerical values gives


in kilometers this is

Hence, the minimum speed required is 5.7395km/s.
The answer is A. Further apart and move faster.
Conduction in general is the transfer of energy from molecule to molecule through DIRECT CONTACT. In solids and liquids, the molecules are closer to each other; more so in solids than liquids. This enables them to pass energy more quickly. Gas molecules on the other hand are further apart and move faster because they have space to move more freely. Energy does not easily pass on to the next molecule because of the distance between the molecules.
Cerebellum: controls balance and muscle coordination; located caudal to the cerebrum in the sheep brain. ... Gray matter: areas of the brain and spinal cord containing neuronal cell bodies, dendrites, and unmyelinated axons. Found in the cerebral cortex of the brain and inner area of the spinal cord
Answer:
The liquid phase will have the lowest temperature change upon heating.
Explanation:
Assuming no phase change due to heating, we know that the temperature change, is proportional to the mass heated, being the proportionality constant a quantity that depends on the material, and represents the resistance of the material to change the temperature, called specific heat.
So, if we assume that the mass is the same for the three phases, and that the amount of heat supplied is also the same,the phase with the highest specific heat will have the lowest temperature change.
So, the liquid phase will be the one that exhibits this behavior, as the specific heat of liquid water (4.184 J/gºC) is the highest among the three phases.
Answer:
The answer should be A and B. I don't fully know so don't quote me on that! Haha.
Explanation: