Answer:
M = ρ V = 9 gm/cm^ 3 * cm^3 = 27 gm
a = (V2 - V1) / t = (6 - 2) m/s / 12 s = 1/3 m/s^2 the acceleration
F = M a = 27 gm * 1/3 m/s^2 = 9 dynes net force applied
Answer:
v' = 1.5 m/s
Explanation:
given,
mass of the bullet, m = 10 g
initial speed of the bullet, v = 300 m/s
final speed of the bullet after collision, v' = 300/2 = 150 m/s
Mass of the block, M = 1 Kg
initial speed of the block, u = 0 m/s
velocity of the block after collision, u' = ?
using conservation of momentum
m v + Mu = m v' + M u'
0.01 x 300 + 0 = 0.01 x 150 + 1 x v'
v' = 0.01 x 150
v' = 1.5 m/s
Speed of the block after collision is equal to v' = 1.5 m/s
Answer:
1.) Current = 213.33A
2.) Potential difference = 3200 V
Explanation:
Given that
Number of electrons n = 4 x 10^21 electrons
Resistance R = 15 ohm
Time t = 3 s
From the definition of current ;
Current is the rate of flow of changes. That is,
Current I = Q/t
Where
Q = 4 × 10^21 × 1.6 × 10^-19
Q = 460C
Current I = 460/3
Current I = 213.33 A
Using Ohms law which state that
V = IR
Substitute the resistance R and current I into the formula above
Potential difference V = 213.3 × 15
Potential difference V = 3200 V
Answer:
kenitec energy
Explanation:
because kinetic and mass have same
When you ride a bicycle it means you are moving forward and the wheels of the bicycle are rotating anti- clockwise as viewed from the left side of the bike