Answer:
0.4 M
Explanation:
The process that takes place in an aqueous K₂HPO₄ solution is:
First we <u>calculate how many K₂HPO₄ moles are there in 200 mL of a 0.2 M solution</u>:
- 200 mL * 0.2 M = 40 mmol K₂HPO₄
Then we <u>convert K₂HPO₄ moles into K⁺ moles</u>, using the <em>stoichiometric coefficients</em> of the reaction above:
- 40 mmol K₂HPO₄ *
= 80 mmol K⁺
Finally we <em>divide the number of K⁺ moles by the volume</em>, to <u>calculate the molarity</u>:
- 80 mmol K⁺ / 200 mL = 0.4 M
Answer:
i will do it brainlist plz
Explanation:
The answer is: 0.158 mol
You find this by doing:
number of moles (n) = mass (m) / molar mass (M)
n=158.034/25.0
Answer:
As the thermal energy of matter increases, its particles usually spread out, causing the substance to expand.
Explanation:
<em> i have a book about this stuff</em>
The Zn that is 1.33 g is used at the start of the reaction where f is 520 ml and h2 collected over water is 28oc and the atmospheric pressure is 1.0 atm.
Given If 520 ml of H2 is gathered over Wate at 28 diploma Celsius and the atmospheric strain is 1 ATM if vapour strain of wate at 28 diploma celsius is 28.three mmhg then the quantity of zn in grams taken at begin of the response is.
We recognise that
h * 2 = PT - P * h * 20 = 1atm - 0.037atm
= 0.963 atm
1 * h * 2 = Ph * 2V / R * T
= 0.963 atm x 0.520 L / 0.0821 L atm/
molK * 301
= 0.02 mol h2
= 0.02molZn
So 0.02 mol Zn x 65.39 g/mol
= 1.33 g Zn
Read more about zinc;
brainly.com/question/28880469
#SPJ4