Answer:
<h2 /><h2>1) Radon is colorless at standard temperature and pressure and it is the most dense gas known. At temperature below it's freezing point is has a brilliant yellow phosphorescence. It is chemically unreactive, it is highly radioactive and has a short half life.</h2>
<h2>2) 7.5 times heavier than air and more than 100 times heavier than hydrogen. The gas liquefies at −61.8 °C (−79.2 °F) and freezes at −71 °C (−96 °F). On further cooling, solid radon glows with a soft yellow light that becomes orange-red at the temperature of liquid air (−195 °C [−319 °F]).</h2>
<h2 /><h2 /><h2 />
Explanation:
<h2>I think this much is enough , as more information </h2><h2>is given in other answer if more is needed just </h2><h2>comment me I will answer you there only.</h2>
<span>2π/T = 2π/10 = π/5
y(x) = A sin (wx) = 0.75 sin (πx/5)
y(4) = 0.75 sin (4π/5) = 0.4408389392... ≈ 0.441</span><span>
</span>
B. Some of the ball’s energy is transformed to thermal energy.
Hope this helps you!
Answer:
4v/3
Explanation:
Assume elastic collision by the law of momentum conservation:

where v is the original speed of car 1, v1 is the final speed of car 1 and v2 is final speed of car 2. m1 and m2 are masses of car 1 and car 2, respectively
Substitute 

Divide both side by
, then multiply by 6 we have



So the final speed of the second car is 4/3 of the first car original speed
Answer:
24 s
Explanation:
8 s / tic * 3 tic = 24 sec from origin