Answer:
(a) The initial speed required is 13116 m/s
(b) The escape speed is 10394 m/s
This problem involves the application of newtons laws of gravitation. The forces in action here are conservative and as a result mechanical energy is conserved.
The full calculation can be found in the attachment below.
Explanation:
In both parts (a) and (b) the energy conservation equation were used. Assumption was made that when the object is very far from the planet the distance from the planet's center approaches infinity and the gravitational potential energy approaches zero.
The calculation can be found below.
Answer:
The intensity of light passing from the third polarizer is 3Io/16.
Explanation:
The law of Malus is given by

Let the incident intensity of light is Io.
The intensity of light passing from the first polarizer is

The intensity of light passing from the second polarizer is

The intensity of light passing from the third polarizer is

Momentum should be conserved. The momentum of both
objects must balance with their initial and final momentum.
Let m1 and v1 be the mass and velocity of the
bowling ball
And m2 and v2 be the mass and velocity of the
bowling pin
(m1v1)i + (m2v2)i = (m1v1)f + (m2v2)f
30 kg m/s + (1.5 kg)(0 m/s) = 13kg m/s + 1.5v2f
V2f = 11.33 m/s
<span>So the momentum = 1.5 kg(11.33 m/s) = 17 kg m/s</span>
Density is given by:
D = M/V
D = density, M = mass, V = volume
Given values:
M = 3.7g, V = 4.6cm³
Plug in and solve for D:
D = 3.7/4.6
D = 0.80g/cm³