Answer:
y = 17 m
Explanation:
For this projectile launch exercise, let's write the equation of position
x = v₀ₓ t
y =
t - ½ g t²
let's substitute
45 = v₀ cos θ t
10 = v₀ sin θ t - ½ 9.8 t²
the maximum height the ball can reach where the vertical velocity is zero
v_{y} = v_{oy} - gt
0 = v₀ sin θ - gt
0 = v₀ sin θ - 9.8 t
Let's write our system of equations
45 = v₀ cos θ t
10 = v₀ sin θ t - ½ 9.8 t²
0 = v₀ sin θ - 9.8 t
We have a system of three equations with three unknowns for which it can be solved.
Let's use the last two
v₀ sin θ = 9.8 t
we substitute
10 = (9.8 t) t - ½ 9.8 t2
10 = ½ 9.8 t2
10 = 4.9 t2
t = √ (10 / 4.9)
t = 1,429 s
Now let's use the first equation and the last one
45 = v₀ cos θ t
0 = v₀ sin θ - 9.8 t
9.8 t = v₀ sin θ
45 / t = v₀ cos θ
we divide
9.8t / (45 / t) = tan θ
tan θ = 9.8 t² / 45
θ = tan⁻¹ ( 9.8 t² / 45
)
θ = tan⁻¹ (0.4447)
θ = 24º
Now we can calculate the maximum height
v_y² =
- 2 g y
vy = 0
y = v_{oy}^2 / 2g
y = (20 sin 24)²/2 9.8
y = 3,376 m
the other angle that gives the same result is
θ‘= 90 - θ
θ' = 90 -24
θ'= 66'
for this angle the maximum height is
y = v_{oy}^2 / 2g
y = (20 sin 66)²/2 9.8
y = 17 m
thisis the correct
Answer:
R = 0.21 Ω
Explanation:
the formula:
R = r x l/A
R = (44 x 10-⁸ Ωm) x 1.5 / (π x (1 x 10-³ m)²)
R = 6.6 x 10-⁷ / 3.14 x 10-⁶
R = 0.21 Ω
To solve this problem it is necessary to consider two concepts. The first of these is the flow rate that can be defined as the volumetric quantity that a channel travels in a given time. The flow rate can also be calculated from the Area and speed, that is,
Q = V*A
Where,
A= Cross-sectional Area
V = Velocity
The second concept related to the calculation of this problem is continuity, which is defined as the proportion that exists between the input channel and the output channel. It is understood as well as the geometric section of entry and exit, defined as,


Our values are given as,


Re-arrange the equation to find the first ratio of rates we have:



The second ratio of rates is



Answer:
a) Acceleration of the car is given as

b) Acceleration of the truck is given as

Explanation:
As we know that there is no external force in the direction of motion of truck and car
So here we can say that the momentum of the system before and after collision must be conserved
So here we will have

now we have


a) For acceleration of car we know that it is rate of change in velocity of car
so we have



b) For acceleration of truck we will find the rate of change in velocity of the truck
so we have



The formula for the density of a substance expressed in mass and volume is rho = mass/volume or p = m/v. Rearranging the formula to isolate volume gives the formula v = m/p. To solve for the problem given, this formula must be used. This gives a solution of:
v = m/p = 250 g/ 968 g/cm^3 = 0.258 cm^3 of sodium