Answer:
d = 68.18 m
Explanation:
Given that,
Initial velocity, u = 15 m/s
Finally it comes to stop, v = 0
Acceleration, a = -1.65 m/s²
Time, t = 2.5 s
We need to find the distance covered by the hayride before coming to a stop. Let d is the distance covered. Using third equation of motion to find it :

So, the hayride will cover a distance of 68.18 m.
An example is when u rub your pen on your hair hard that is friction
Answer:
No one is right
Explanation:
John Case:
The function
is defined between -1 and 1, So it is not possible obtain a value
greater.
In addition, if you move the function cosine a T Value, and T is the Period, the function take the same value due to the cosine is a periodic function.
Larry case:
Is you have
, the domain of this is [0,2].
it is equivalent to adding 1 to the domain of the
, and its mean that the function
, in general, is not greater than
.
Answer:
a=2500J,b=1000K,c=1000J,d=14.142m/s
Explanation:
V²=U²+2gh
V²=0 + 2×10×10=200m/s
a).kinetic energy=(1/2)mv²=(1/2)25×200=2500
potential energy=mgh
p.e=25×10×10=2500J
pe+ke=2500+2500=5KJ
b).mgh=25×10×4=1000J
c). V²=U²+2gh
V²=0+2×10×4
V²=80
kinetic energy=(1/2)mv²
=(1/2)25×80
=1KJ
d). From my first paragraph V²=200
V=√200
V=14.142m/s