Answer:
The amount of energy needed to raise the temperature of the cylinder by 25 °C is 23.3 KJ of heat.
Explanation:
The step by step calculation can be found in the attachment below. Thank you.
Explanation:
Given that,
Mass of the object, m = 7.11 kg
Spring constant of the spring, k = 61.6 N/m
Speed of the observer, 
We need to find the time period of oscillation observed by the observed. The time period of oscillation is given by :

Time period of oscillation measured by the observer is :

So, the time period of oscillation measured by the observer is 5.79 seconds.
Answer:
Force is 432.94 N along the rebound direction of ball.
Explanation:
Force is rate of change of momentum.

Final momentum = 0.38 x -1.70 = -0.646 kgm/s
Initial momentum = 0.38 x 2.20 = 0.836 kgm/s
Change in momentum = -0.646 - 0.836 = -1.472 kgm/s
Time = 3.40 x 10⁻³ s

Force is 432.94 N along the rebound direction of ball.
A pinhole camera<span> is a simple </span>camera<span> without a lens but with a tiny aperture, a</span>pinhole<span> – effectively a light-proof box with a small hole in one side. Light from a scene passes through the aperture and projects an inverted image on the opposite side of the box, which is known as the </span>camera<span> obscura effect.</span>
When the spring is extended by 44.5 cm - 34.0 cm = 10.5 cm = 0.105 m, it exerts a restoring force with magnitude R such that the net force on the mass is
∑ F = R - mg = 0
where mg = weight of the mass = (7.00 kg) g = 68.6 N.
It follows that R = 68.6 N, and by Hooke's law, the spring constant is k such that
k (0.105 m) = 68.6 N ⇒ k = (68.6 N) / (0.105 m) ≈ 653 N/m