9514 1404 393
Answer:
(6,2)
Step-by-step explanation:
As is often the case with multiple-choice problems, you don't actually need to know the detailed working. You just need to know what the answer looks like.
When point X is dilated by a factor of 2 with point Z as the center of dilation, it will move to a location twice as far from Z. You can tell by looking at the graph that X' will be in the first quadrant, above and to the right of the location of X. The only sensible answer choice is ...
X' = (6, 2)
_____
<em>Additional comment</em>
X is a distance of X-Z = (4, 0) -(2, -2) = (2, 2) from Z Doubling that will put the image point a distance of 2(2, 2) = (4, 4) from Z. When this is added to Z, we find ...
X' = Z + (4, 4) = (2+4, -2+4) = (6, 2)
Answer:
x° = 37°
Step-by-step explanation:
* Lets revise some facts of a circle
- The secant is a line intersect the circle in two points
- If two secants intersect each other in a point outside the circle,
then the measure of the angle between them is half the difference
of the measures of their intercepted arcs
* Now lets solve the problem
- There is a circle
- Two secants of this circle intersect each other in a point outside
the circle
∴ The measure of the angle between them = 1/2 the difference of the
measures of their intercepted arcs
∵ The measure of the angle between them is x°
∵ The measures of their intercepted arcs are 26° and 100°
- Use the rule above to find x
∴ x° = 1/2 [ measure of the large arc - measure of small arc]
∵ The measure of the large arc is 100°
∵ The measure of the small arc is 26°
∴ x° = 1/2 [100 - 26] = 1/2 [74] = 37°
∴ x° = 37°
Answer:
c
Step-by-step explanation:
work out the average for the data below
Answer: Inferential
Step-by-step explanation:
Inferential statistics, has to do with taking data from the samples that the researcher has and then making generalizations about the population through the sample gotten.
Through Inferential statistics, one can draw conclusion about a particular phenomenon. Therefore, the answer to the above question is Inferential statistics
.