Answer:
How much force is required to cause an object with a mass of 850 kg to accelerate at a rate of 2 meters per second squared (m/s^2)?
Explanation:
<em>1700N
</em>
<em>
Mass multiplied by acceleration gives you the amount of force needed for it.</em>
6 . . . . . a crest
7 . . . . . the amplitude
8 . . . . . the wavelength
9 . . . . . a trough
Not if both speeds are in the same units.
However, if the 254 is 'centimeters per time' and the 100 is 'inches per time',
then the speeds are equal.
Explanation:
Fluids exert both drag and lift forces on moving objects. Drag is the frictional force opposing motion. Lift is the force perpendicular to motion.
Some objects, like parachutes, are designed with large cross sectional areas to increase drag force. Usually though, objects are designed to minimize drag force. It's why cars, planes, and boats have sleek shapes.
Airplane wings have shapes called airfoils that generate lift. It's what makes them fly. The same shape is found in racecar spoilers. These spoilers use lift force to push down on the rear tires, increasing traction.
Answer:
6.75 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration = 16 m/s²
g = Acceleration due to gravity = 9.81 m/s²
Let y be the distance the rocket is accelerating
960-y is the distance traveled in free fall

In free fall

The distance the rocket will keep accelerating is 364.881828749 m
After which it will travel 960-364.881828749 = 595.118171251 m in free fall

The time the rocket is accelerating is 6.75 seconds