The sum of the two vectors in A, B, and C is equal to the sum of the two vectors above the line. The sum of the two vectors in D isn't.
Answer:
Time, t = 0.23 seconds
Explanation:
It is given that,
Initial speed of the ranger, u = 52 km/h = 14.44 m/s
Final speed of the ranger, v = 0 (as brakes are applied)
Acceleration of the ranger, 
Distance between deer and the vehicle, d = 87 m
Let d' is the distance covered by the deer so that it comes top rest. So,


d' = 26.06 m
Distance between the point where the deer stops and the vehicle is :
D=d-d'
D=87 - 26.06 = 60.94 m
Let t is the maximum reaction time allowed if the ranger is to avoid hitting the deer. It can be calculated as :


t = 0.23 seconds
Hence, this is the required solution.
Answer:
D remove 1.5 ML of liquid.
Explanation:
Answer:
The frictional force acting on the block is 14.8 N.
Explanation:
Given that,
Weight of block = 37 N
Coefficients of static = 0.8
Kinetic friction = 0.4
Tension = 24 N
We need to calculate the maximum friction force
Using formula of friction force

Put the value into the formula


So, the tension must exceeds 29.6 N for the block to move
We need to calculate the frictional force acting on the block
Using formula of frictional force

Put the value in to the formula


Hence, The frictional force acting on the block is 14.8 N.