1) d
2) b because the independent variable is the thing you change/control in an experiment
3) c because the dependent variable is the thing being measured in an experiment
4)hmm it might be d, as c and a are both correct as different sized feeders would make it an unfair test and different types of food would as well
5) c
6) a
7) b obviously because if he activated them at different times then the ones activated last would have an advantage
Answer: 19.71 feet
Explanation:
Given: Speed of Charlotte =58.6 mi/h
Since 1 hour = 3600 seconds
and 1 mile = 5280 feet
So, Speed of Charlotte =
mi/ sec
She looks down at her phone and takes her eyes off the road for 4.36 s.
Since , Distance = 
So, Distance = 
Hence, Charlotte traveled 19.71 feet during this time.
Answer:
Explanation:
Unit 10 - Acid/Base ... (a) Mg(OH. 2. ) (b) Mg(OH). 2. (c) Mg. 2. OH. (d) MgOH. 2. Standard: ... balanced equation for these neutralization reactions: 3. HCl + NaOH → ... H2CO3 + Ca(OH)2 → ... C5.7B Predict products of an acid-base neutralization. 8. 2 NH4OH + H2S ...An Arrhenius base is a compound that increases the OH − ion concentration in ... and a base is called a neutralization reaction and can be represented as follows: ... chemical equation for the neutralization reaction between HCl and Mg(OH) 2. ... acid, an Arrhenius base, or neither. a) NaOH. b) C 2H 5OH. c) H 3PO 4. 6
Answer:
D, They produce fossil fuels
Explanation:
you can't just pull them out of nowhere
Answer:
The answer to this can be arrived at by clculating the mole fraction of atoms higher than the activation energy of 10.0 kJ by pluging in the values given into the Arrhenius equation. The answer to this is 20.22 moles of Argon have energy equal to or greater than 10.0 kJ
Explanation:
From Arrhenius equation showing the temperature dependence of reaction rates.
where
k = rate constant
A = Frequency or pre-exponential factor
Ea = energy of activation
R = The universal gas constant
T = Kelvin absolute temperature
we have

Where
f = fraction of collision with energy higher than the activation energy
Ea = activation energy = 10.0kJ = 10000J
R = universal gas constant = 8.31 J/mol.K
T = Absolute temperature in Kelvin = 400K
In the Arrhenius equation k = Ae^(-Ea/RT), the factor A is the frequency factor and the component e^(-Ea/RT) is the portion of possible collisions with high enough energy for a reaction to occur at the a specified temperature
Plugging in the values into the equation relating f to activation energy we get
or f =
= 20.22 moles of argon have an energy of 10.0 kJ or greater