Explanation:
The time period rotation of the bob is t and the tension in the thread is T. ... A simple pendulum of length. ... Balancing the forces in Horizontal and vertical direction: ... Circular motion 2.
1 answer
Answer:
i have absolutly no idea how to do it but i looked it up and your answer should be B. i could be wrong but thats what the web told me
Answer:
124.86 V
Explanation:
We have to first calculate the voltage drop across the copper wire. The copper wire has a length of 358 ft
1 ft = 0.3048 m
358 ft = 109.12 m
The diameter of 2 AWG copper wire (d) = 6.544 mm = 0.006544 m
The area of the wire = πd²/4 = (π × 6.544²)/4 = 33.6 mm²
Resistivity of wire (ρ) = 0.0171 Ω.mm²/m
The resistance of the wire = 
The voltage drop across wire = current * resistance = 6.1 A * 0.056 ohm = 0.34 V
The voltage at end = 125.2 - 0.34 = 124.86 V
The energy carried by a photon is equal to
(Planck's Konstant) times (the frequency of the photon) .
Planck's konstant is 6.626 x 10⁻³⁴ m²-kg/s (rounded)