Given:
v = 50.0 m/s, the launch velocity
θ = 36.9°, the launch angle above the horizontal
Assume g = 9.8 m/s² and ignore air resistance.
The vertical component of the launch velocity is
Vy = (50 m/s)*sin(50°) = 30.02 m/s
The time, t, to reach maximum height is given by
(30.02 m/s) - (9.8 m/s²)*(t s) = 0
t = 3.0634 s
The time fo flight is 2*t = 6.1268 s
The horizontal velocity is
u = (50 m/s)cos(36.9°) = 39.9842 m/s
The horizontal distance traveled at time t is given in the table below.
Answer:
t, s x, m
------ --------
0 0
1 39.98
2 79.79
3 112.68
4 159.58
5 199.47
6 239.37
The statement that is true is a. the large bran muffin contains more heat energy. This statement holds true because of the equation E=mc2. E= Energy, m=mass and c=the speed of light. Although both muffins are at room temperature, the larger will theoretically have more heat energy because it has more mass.
Answer:
Farm = 98.1 [N]
Explanation:
To solve this problem we must draw the respective free body diagram, with the forces acting on the monkey. An analysis of the sums on the y-axis must be performed, in this axis the weight is acting down and the forces of both arms pulling up.
Weight is defined as the product of mass by gravitational acceleration.
W = m*g
where:
m = mass = 20 [kg]
g = gravity acceleration = 9.81 [m/s²]
W = 196.2 [N] (units of Newtons)
As this force points down, the force of both arms must go up, therefore each arm exerts a force of:
Farm = 196.2 / 2
Farm = 98.1 [N]
240 meters
Explanation: 16 x 15 because it’s 16 meters every second