First, recognize that this is an elimination reaction in which hydroxide must leave and a double bond must form in its place. It is likely an E2 reaction. Here is an efficient mechanism:
1) Pre-reaction: Protonate the -OH to make it a good leaving group, water. H2SO4 or any strong H+ donor works. The water is positively charged but still connected to the compound.
2) E2: Use a sterically hindered base, such as tert-butoxide (tButO-) to abstract the hydrogen from the secondary carbon. [You want a sterically hindered base because a strong, non-sterically hindered base could also abstract a hydrogen from one of the two methyl groups on the tertiary carbon, and that leads to unwanted products, which is not efficient]. As the proton of hydrogen is abstracted, water leaves at the same time, creating an intermediate tertiary carbocation, and the 2 electrons in the C-H bond immediately are used to make a double bond towards the partial positive charge.
In the products we see the major product and water, as expected. Even though you have an intermediate, remember that an E2 mechanism technically happens in one step after -OH protonation.
Neo-pentane represents the Compound A while compound B is n-pentane.
After careful consideration we can say that compounds A and B are alkanes and also isomers of pentane. In chemistry, Isomers are defined as compounds having same empirical molecular formula but different structural formulas due to varying arrangement of atoms.
Now, as per the question statement, compound A gives a single monochlorination product upon heating with the molecule of chlorine i.e. Cl2 showing that the molecule is extremely symmetric. This molecule must be neo-pentane. Refer to image 1.
Similarly, Compound B forms 3 constitutional isomers after undergoing monochlorination. This compound must be n-pentane since three are 3 different types of carbon atoms in the structure. Refer to image 2.
If you need to learn more about neo-pentane click here:
brainly.com/question/20815247
#SPJ4
Answer:
2.2 moles H2O
Explanation:
, which rounds to about 2.2
Answer:
In liquids, particles are quite close together and move with random motion throughout the container. Particles move rapidly in all directions but collide with each other more frequently than in gases due to shorter distances between particles. With an increase in temperature, the particles move faster as they gain kinetic energy, resulting in increased collision rates and an increased rate of diffusion.
Explanation:
In liquids, particles are quite close together and move with random motion throughout the container. Particles move rapidly in all directions but collide with each other more frequently than in gases due to shorter distances between particles. With an increase in temperature, the particles move faster as they gain kinetic energy, resulting in increased collision rates and an increased rate of diffusion.