Answer:
5x10⁻⁶ = [HTeH₄O₆⁺]
Explanation:
The first dissociation equilibrium of the telluric acid in water is:
H₂TeH₄O₆ + H₂O ⇄ HTeH₄O₆⁺ + H₃O⁺
Using H-H equation for telluric acid:
<em>pH = pKa + log₁₀ [HTeH₄O₆⁺] / [H₂TeH₄O₆]</em>
pKa of telluric acid is -logKa1
pKa = -log 2.0x10⁻⁸
pKa = 7.699
As concentration of [H₂TeH₄O₆] is 0.25M, replacing in H-H equation:
3.00 = 7.699+ log₁₀ [HTeH₄O₆⁺] / [0.25M]
-4.699 = log₁₀ [HTeH₄O₆⁺] / [0.25M]
2x10⁻⁵ = [HTeH₄O₆⁺] / [0.25M]
<h3>5x10⁻⁶ = [HTeH₄O₆⁺]</h3>
Answer:
see below
Explanation:
1. Predicting products (double replacement): ab + cd ---> ad + cb
KNO₃(aq) + Fe(OH)₃(s)
2. balance the equation
3KOH (aq) + Fe(NO3)₃ (aq) ---> 3KNO₃(aq) + Fe(OH)₃(s)
3. I don't know if you need this but ionic equation: only aqueous things get split into ions; gas, liquid, and solids stay together
3K⁺(aq) + 3(OH)⁻(aq) + Fe³⁺(aq) + 3NO₃⁻(aq) ---> 3K ⁺(aq) + 3NO₃⁻(aq) + Fe(OH)₃(s)
removing things on both product and reactant side
3(OH)⁻(aq) + Fe³⁺(aq) --->Fe(OH)₃(s)
Answer:
I am not quite sure about it, i think it is because of the fact that mercury has weight, when it is filled with mercury, it will expand a little bit.
I think it’s carbon but I’m not sure