The knowledge of plate tectonics help people living in areas prone to earthquakes and volcanic eruptions can help by knowing the chances of the earthquake or volcanic eruption
Sodium(Na) is the limiting reagent.
<h3>What is Limiting reagent?</h3>
The reactant that is totally consumed during a reaction, or the limiting reagent, decides when the process comes to an end. The precise quantity of reactant required to react with another element may be estimated from the reaction stoichiometry.
How do you identify a limiting reagent?
The limiting reactant is the one that is consumed first and sets a limit on the quantity of product(s) that can be produced. Calculate how many moles of each reactant are present and contrast this ratio with the mole ratio of the reactants in the balanced chemical equation to get the limiting reactant.
Start by writing the balanced chemical equation that describes this reaction

Notice that the reaction consumes 2 moles of sodium metal for every 1 mole of chlorine gas that takes part in the reaction and produces 2 moles of sodium chloride.
now we can see that we have 3 moles of sodium and 3 moles of chlorine, according to question. so, we can say that sodium is the limiting reagent in the given situation.
to learn more about Limiting Reagent go to - brainly.com/question/14222359
#SPJ4
The name of this alkane is with central carbons are bonded to c h 3 is 2-methylbutane.
<h3>
What is alkane?</h3>
Alkanes belong to the family of saturated hydrocarbons with carbon carbon single bond.
For the given alkane;
CH₃ H
CH₃ - C - C - CH₃
H H
Thus, the name of this alkane is with central carbons are bonded to c h 3 is 2-methylbutane.
Learn more about alkane here: brainly.com/question/24270289
#SPJ4
Answer:
The answer is B. Van der Waals forces are weaker than ionic and covalent bonds.
Explanation:
In general, if we arrange these molecular forces from the strongest to weakest, it would be like this:
Covalent bonds > Ionic bonds > Hydrogen bonds > Dipole-Dipole Interactions > Van der Waals forces
Covalent bonds are known to have the strongest and most stable bonds since they go deep and into the inter-molecular state. A diamond is an example of a compound with this characteristic bond.
Ionic bonds are the next strongest molecular bond following covalent bonds. This is due to the protons and electrons causing an electro-static force which results to the strong bonds. An example would be Sodium Chloride (NaCl), which when separated is Na⁺ and Cl⁻.
Van der Waals forces, also known as Dispersion forces, are the weakest type of molecular bonds. They are only formed through residual molecular attractions when molecules pass by each other. It doesn't even last long due to the uneven electron dispersion. It can be made stronger by adding more electrons in the molecule. This kind of molecular bonds appear in non-polar molecules such as carbon dioxide.
HOPE THIS HELPS!!!!!!!!!!!!!!
///////////////////////////////////////////////////////////////////////////////////////////