Explanation:
1) Boyle's Law: This law states that pressure is inversely related to the volume occupied by the gas at constant temperature and number of moles.
(At constant temperature and number of moles)
- When the size of the chamber is increased the volume occupied the gas will increase with which pressure exerted by the gas will decrease down.
- When we press the inflated balloon the pressure on the gas is increased with which volume of the occupied by the gas inside the balloon decreased.
2) Charles' Law: This law states that volume occupied by the gas is directly related to the temperature of the gas at constant pressure and number of moles.
(At constant pressure and number of moles)
- The size of the balloon deceases because the in winters the temperature decreases with which volume of the gas present in the balloon also decreases.
- When the flexible closed container is heated the temperature of the gas inside the container increases with which the volume occupied by the gas in the container will increase resulting in expanding of container.
3) Avogadro's Law: This law states that volume occupied by the gas is directly related to the number of moles of the gas at constant pressure and temperature.
(At constant temperature and pressure)
When we blow air into the balloon the umber of air particles increases with which the volume of the gas inside the balloon also increases resulting in increase in size of the balloon.
Answer:c
Explanation:
it increases by when it moves
Answer:
magnesium + hydrochloric acid → hydrogen gas + magnesium chloride
explanation:
the nitrogen in HNO3 is in the +5 oxidation state and is easily reduced. The reduction would result in the oxidation of the hydrogen gas, forming the water once again.The sulfur in H2SO4 is also in its highest oxidation state, +6.
<em>Hope</em><em> this</em><em> helps</em><em> </em><em>:</em><em>)</em>
Answer:
= 25.05°C
Explanation:
Given:
the value of ΔHcomb (heat of combustion) for dimethylphthalate (C10H10O4) is = 4685 kJ/mol.
mass = 0.905g of dimethylphthalate
molar mass = 194.18g dimethylphthalate
number of moles of dimethylphthalate = ???
= 21.5°C
= 6.15 kJ/°C
= ???
since we have our molar mass and mass of dimethylphthalate ;we can determine the number of moles as;
0.905g of dimethylphthalate × 
number of moles of dimethylphthalate = 0.000466 moles
Heat released = moles of dimethylphthalate × heat of combustion
= 0.000466 moles × 4685 kJ
= 21.84 kJ
∴ Heat absorbed by the calorimeter =

21.84 kJ =6.15 kJ/°C 
21.84 KJ = 
21.84 KJ =
- 132.225 kJ
21.84 KJ + 132.225 kJ = 
154.065 kJ = 
= 
=25.05°C
Answer:
k ≈ 9,56x10³ s⁻¹
Explanation:
It is possible to solve this question using Arrhenius formula:

Where:
k1: 1,35x10² s⁻¹
T1: 25,0°C + 273,15 = 298,15K
Ea = 55,5 kJ/mol
R = 8,314472x10⁻³ kJ/molK
k2 : ???
T2: 95,0°C+ 273,15K = 368,15K
Solving:



<em>k ≈ 9,56x10³ s⁻¹</em>
I hope it helps!