Answer:
Mass of liquid: 20.421g
Density= 1.0109405940594 g/mL
Explanation:
Mass of liquid
To find mass of liquid you take the mass of beaker + liquid (171.223g) and subtract it from the Mass of beaker (beaker without the water). The difference is the answer.
171.223g - 150.802g = 20.421g
Density
To find density you use the formula Mass/Volume. Take the Volume given, and the mass of the liquid you just found.
20.421mL/20.421g = 1.0109405940594 g/mL
Answer:
The equilbrium constant is 179.6
Explanation:
To solve this question we can use the equation:
ΔG = -RTlnK
<em>Where ΔG is Gibbs free energy = 12.86kJ/mol</em>
<em>R is gas constant = 8.314x10⁻³kJ/molK</em>
<em>T is absolute temperature = 298K</em>
<em>And K is equilibrium constant.</em>
Replacing:
12.86kJ/mol = -8.314x10⁻³kJ/molK*298K lnK
5.19 = lnK
e^5.19 = K
179.6 = K
<h3>The equilbrium constant is 179.6</h3>
Answer and Explanation:
The balanced chemical equations are as follows:
The chemical formula of oxalic is 
In the case when oxalic acts reacted with the water so here the oxalic acid eliminates one proton that leads to the development of mono acids
After that, the second step derives that when oxalic acid is in aqueous solution eliminates other proton so it represent the polyprotic acid
Now the chemical equations are as follows:
Elimination of one proton

Now the elimination of other proton

Correct Answer: option C: Formation of sea ice
Reason:
<span> In cold regions, changes in salinity alters the water present in ocean. Further, water density also changes with temperature. In general, water density in ocean water increases with decreasing temperature. This is because, when salt is ejected into the ocean as sea ice forms, the water's salinity increases. Since, salt water is heavier, the density of the water increases.</span>