<span>So, when you make something boiling or melting, its still the same substance. Water doesn't change into something else, just change its state of matter. When you burn something, one substance reacts with another. For example, when you burn carbon in oxygen, you get carbon dioxide. That's the difference.</span>
12 HClO₄ + 1 P₄O₁₀ → 4 H₃PO₄ + 6 Cl₂O₇
<h3>Explanation</h3>
Balance by the conservation of atoms.
Assign coefficient <em>1 </em>to the species with the largest number of elements and atoms. H₃PO₄ contains three elements. Each of its molecule contains eight atoms, that's two more than the six atoms in a HClO₄ molecule. Start by assigning H₃PO₄ a coefficient of <em>1</em>.
? HClO₄ + ? P₄O₁₀ → <em>1</em> H₃PO₄ + ? Cl₂O₇
There are now three H atoms, one P atom on the product side. H₃PO₄ is the only product that contains H and P atoms. As a result, there should be the same number of H and P atoms on the reactant side.
- Among all reactants, only HClO₄ contains H atoms. Each HClO₄ molecule contains one H atom. Three H atoms correspond to three HClO₄ molecule.
- Among all reactants, only P₄O₁₀ contains P atoms. Each P₄O₁₀ molecule contains four P atoms. One P atom corresponds to 1/4 of a P₄O₁₀ molecule.
Thus
<em>3</em> HClO₄ + <em>1/4</em> P₄O₁₀ → <em>1</em> H₃PO₄ + ? Cl₂O₇
There are three Cl atoms in three HClO₄ molecules. HClO₄ is the only species that contains Cl among all reactants. There are three Cl atoms on the reactant side and shall be the same number of Cl atoms on the product side.
- Cl₂O₇ is the only molecule that contains Cl among the products. Each Cl₂O₇ molecule contains two Cl atoms. Three Cl atoms will correspond to 3/2 Cl₂O₇ molecules.
<em>3</em> HClO₄ + <em>1/4</em> P₄O₁₀ → <em>1</em> H₃PO₄ + <em>3/2</em> Cl₂O₇
Multiply both sides by the least common multiple of the denominators to eliminate the fraction. The least common multiple in this case is four.
12 HClO₄ + 1 P₄O₁₀ → 4 H₃PO₄ + 6 Cl₂O₇
<span>0.0157 L.
For this equation use the combined gas law, which states P1*V1/T1 = P2*V2/T2, but in this case we can remove the T, because T1 = T2, because the temperature is constant. Then we solve for V2 because it is the new volume. So
P1*V1/P2 =V2
Plug in the variables, P1 = 100 atm, V1 = 1.02 L, P2 = 65.0 atm, and V2 = 0.0157 atm.</span>
Answer:
Mass of water produced is 22.86 g.
Explanation:
Given data:
Mass of hydrogen = 2.56 g
Mass of oxygen = 20.32 g
Mass of water = ?
Solution:
Chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of oxygen:
Number of moles = mass/ molar mass
Number of moles = 20.32 g/ 32 g/mol
Number of moles = 0.635 mol
Number of moles of hydrogen:
Number of moles = mass/ molar mass
Number of moles = 2.56 g/ 2 g/mol
Number of moles = 1.28 mol
Now we will compare the moles of water with oxygen and hydrogen.
O₂ : H₂O
1 : 2
0.635 ; 2×0.635 = 1.27
H₂ : H₂O
2 : 2
1.28 : 1.28
The number of moles of water produced by oxygen are less thus it will be limiting reactant.
Mass of water produced:
Mass = number of moles × molar mass
Mass = 1.27 × 18 g/mol
Mass = 22.86 g
Answer:
See explanation
Explanation:
When water reacts with formic acid, The following equilibrium is set up;
HCOOH(aq) + H20(l) ⇄ HCOO-(aq) + H30+(aq)
This is because, the water abstracts a proton from formic acid to form its conjugate base, formate ion.
At equilibrium, the forward is favored.