Answer:
<h2>D) clapping hands </h2>
Explanation:
hope it's helpful
When comparing single bonds between atoms of comparable types, the stronger the bond is, the bigger the atom, the weaker it is.
The length of the X-H bond lengthens while the strength of the bond shortens with increasing halogen size (F-H strongest, I-H weakest). When comparing single bonds between atoms of similar sorts, the larger the atom, the weaker the bond. It can be explained by the fact that less energy is required to break the bond the bigger the atom's atomic size. The force of attraction from the nucleus to the outermost orbit will be less for iodine since it has a larger atom than the other elements in the group.
Learn more about single bonds here-
brainly.com/question/16626126
#SPJ4
1, When temperature is increased the volume will also increase. this is because the particles will gain kinetic energy and bombard the walls of the container of the gas at a higher frequency, therefore, for the pressure to remain constant as per Charles' law, the volume will have to increase so that the rate of bombardment remains constant. This is explained by the Charles law which states that the volume of a gas is directly proportional to the absolute temperature provided pressure remains constant.
2. When temperature is Decreased the volume will also Decrease. this is because the particles will loose kinetic energy and bombard the walls of the container of the gas less frequently, therefore, for the pressure to remain constant as per Charles' law, the volume will have to reduce so that the rate of bombardment remains constant. This is explained by the Charles law which states that the volume of a gas is directly proportional to the absolute temperature provided pressure remains constant.
3. When temperature is increased the pressure will increase. This is because the gas particles gain kinetic energy and bombard the walls of the container more frequently. this is according to Pressure law which states that for a constant volume of a gas the pressure is directly proportional to absolute temperature
4. When temperature is decreased, pressure will decrease, This is because the gas particles lose kinetic energy and bombard the walls of the container less frequently. this is according to Pressure law which states that for a constant volume of a gas the pressure is directly proportional to absolute temperature
5. When particles are added, pressure will increase. This is because the bombardment per unit area also increases. Boyles law explains this, that at fixed temperature the volume of a gas is inversely proportional to the pressure.
6. When particles are removed, the pressure will decrease. This is because the bombardment per unit area also decreases. Boyle's law explains this, that at fixed temperature the volume of a gas is inversely proportional to the pressure.
First you must write a balanced chemical equation.
C3H8 + 5O2 --> 3CO2 + 4H2O
From there, we can set up the stoichiometry equation to solve.
g O2= 70.2 g C3H8 X (1 mol C3H8/44.0962g C3H8) X (5 mol O2/1 mol C3H8) X (31.998g O2/1 mol O2)
Now solve, and you should get 254.7 g O2. Hope this helped!