Answer:
Júpiter and 60000 the are the awnsers
Answer:
CeO₂
Explanation:
Hello!
In this case, since we are given the mass of both cerium and the cerium oxide, we can first compute the moles of cerium and the moles of oxygen as shown below:


Now, we simply divide each moles by 0.03 as the fewest moles in the formula to obtain the simplest formula (empirical formula) of this oxide:

Thus, the formula turns out:

Regards!
Answer:
Explanation:
Hello!
In this case, given the chemical reaction:
In such a way, given the volumes and molarities of each reactant, we can compute the moles of produced iron (III) hydroxide by each of them, via the 3:1 and 1:1 mole ratios:
It means that the sodium hydroxide is the limiting reactant and 0.00833 moles of iron (III) hydroxide are produced; thus, the required mass is:
The answers that are correct are a, b, and d
Pedigree charts are used to see traits that are present in families or individuals. For example, it can be used see if certain diseases are running through someone's family and if that individual will inherit the disease.