i believ that the answer would be
the acceleration of B is 0.2
Answer:
59.4 meters
Explanation:
The correct question statement is :
A floor polisher has a rotating disk that has a 15-cm radius. The disk rotates at a constant angular velocity of 1.4 rev/s and is covered with a soft material that does the polishing. An operator holds the polisher in one place for 4.5 s, in order to buff an especially scuff ed area of the floor. How far (in meters) does a spot on the outer edge of the disk move during this time?
Solution:
We know for a circle of radius r and θ angle by an arc of length S at the center,
S=rθ
This gives
θ=S/r
also we know angular velocity
ω=θ/t where t is time
or
θ=ωt
and we know
1 revolution =2π radians
From this we have
angular velocity ω = 1.4 revolutions per sec = 1.4×2π radians /sec = 1.4×3.14×2×= 8.8 radians / sec
Putting values of ω and time t in
θ=ωt
we have
θ= 8.8 rad / sec × 4.5 sec
θ= 396 radians
We are given radius r = 15 cm = 15 ×0.01 m=0.15 m (because 1 m= 100 cm and hence, 1 cm = 0.01 m)
put this value of θ and r in
S=rθ
we have
S= 396 radians ×0.15 m=59.4 m
Feeling of Weight.
When walking, you feel the weight on your feet, therefore, your brain automatically refers to it as a source of weight.
In the air there is no platform to land on, therefore the brain does not have the conscience to register you getting pulled down.
For a standing wave on a string, the wavelength is equal to twice the length of the string:

In our problem, L=50.0 cm=0.50 m, therefore the wavelength of the wave is

And the speed of the wave is given by the product between the frequency and the wavelength of the wave:
I assume that the force of 20 N is applied along the direction of motion and was applied for the whole 6 meters, the formula of work is this; Work = force * distance * cosθ where θ is zero degrees. Plugging in the data to the formula; Work = 20 N * 6 m * cos 0º.
Work = 20 N * 6 m * 1
Work = 120 Nm
Work = 120 joules
Hope this helps!