Answer:
The molarity (M) of the following solutions are :
A. M = 0.88 M
B. M = 0.76 M
Explanation:
A. Molarity (M) of 19.2 g of Al(OH)3 dissolved in water to make 280 mL of solution.
Molar mass of Al(OH)3 = Mass of Al + 3(mass of O + mass of H)
= 27 + 3(16 + 1)
= 27 + 3(17) = 27 + 51
= 78 g/mole
= 78 g/mole
Given mass= 19.2 g/mole


Moles = 0.246

Volume = 280 mL = 0.280 L

Molarity = 0.879 M
Molarity = 0.88 M
B .The molarity (M) of a 2.6 L solution made with 235.9 g of KBr
Molar mass of KBr = 119 g/mole
Given mass = 235.9 g

Moles = 1.98
Volume = 2.6 L


Molarity = 0.762 M
Molarity = 0.76 M
Work = force*distance
Work = 670 * 5
Work = 3350 Nm
The answer is
<span>2PbS(s) + 3O2(g) = 2PbO(s) + 2SO2(g)
Your answer is not yet balanced because you have 3 oxygen atoms. it should be balanced by multiplying both side by 2 such as the balanced equation I made. To check it, I will explain why your answer is not yet balanced.
check: (from your equation)
</span> 1-Pb-1
1-S-1
2 -O-3
the difference between the reactant and the product of Oxygen will prove that it is not yet balanced.
If you use 2PbS(s) + 3O2(g) = 2PbO(s) + 2SO2(g), to check it:
2-Pb-2
2-S-2
6 -O-6
then this is now balance
Answer:
P= 0.87g/mL or 0.87g/cm^3
Explanation:
P=m/v
P=density
P=17.4g/20mL
P= 0.87g/mL
1mL=1cm^3