Answer:
c) 0.080 M Al₂(SO₄)₃
Explanation:
Ion [SO₄²⁻] concentration of each solution is:
a) 0.075 M H₂SO₄: <em>[SO₄²⁻] = 0.075M</em>. Because 1 mole of H₂SO₄ contains 1 mole of SO₄²⁻
b) 0.15 M Na₂SO₄: <em>[SO₄²⁻] = 0.15M</em>. Also, 1 mole of Na₂SO₄ contains 1 mole of SO₄²⁻
c) 0.080 M Al₂(SO₄)₃ [SO₄²⁻] = 0.080Mₓ3 =<em> 0.240M</em>. Because 1 mole of Al₂(SO₄)₃ contains 3 moles of SO₄²⁻.
<h3>Thus, the soluion that has the greatest [SO₄²⁻] is 0.080 M Al₂(SO₄)₃</h3>
This problem is providing two reduction-oxidation (redox) reactions in which the oxidized and reduced species can be identified by firstly setting the oxidation number of each element:
Reaction 1: 2K⁺I⁻ + H₂⁺O₂⁻ ⇒2K⁺O⁻²H⁺ + I₂⁰
Reaction 2: Cl₂⁰ + H₂⁰ ⇒ 2H⁺CI⁻
Next, we can see that iodine is being oxidized and oxygen reduced in reaction #1 and chlorine is being reduced and hydrogen oxidized in reaction #2 because the oxidized species increase the oxidation number whereas the reduced ones decrease it.
In such a way, the correct choice is C.
Learn more:
Answer:
It cannot conduct electricity, however adding salt or sugar will make the water have impurities/other substance making it easier to conduct electricity
Explanation:
Distilled water by itself does not contain impurities, thus, it cannot <em>conduct </em>electricity.
When you put salt in water, the water molecules pull the sodium and chlorine ions apart so they are floating freely, increasing the conductivity.
For more information, please refer to the internet :D
Have fun studying, and goodluck!
If you are satisfied with this answer, please rate it or give <u><em>brainliest.</em></u>
Answer:
F2 is the limiting reactant
27.6 grams of NaF is produced.
Explanation:
Balance the equation first.
2Na+ F2 ---> 2NaF
To find the limiting reactant, solve for how much NaF can be produced with Na and F2
12.5g F2 x (1 mole F2/ 38.00 grams F2)x (2 mole NaF/ 1 mole F2)
=0.658 moles NaF
16.2g Na x (1 mole Na/ 22.99 grams Na)x (2 mole NaF/ 2 mole Na)
=0.705 moles NaF
Since F2 produced the least NaF, F2 is the limiting reactant.
Now, to find how much NaF there is, use the moles solved above with F2 as the limiting reactant.
0.658 moles NaF x (41.99 grams NaF/ 1 mole NaF)= 27.6 moles NaF
27.6 moles of NaF would be theoretically produced.
Answer:
it contains the electricity of the battery
Explanation: