Answer:
a

b

c

Explanation:
From the question we are told that
The mass of the bag is 
The normal force experienced is 
The maximum acceleration of the bag is 
Generally this normal force experience by the bag is mathematically represented as

=> 
=> 
=> ![\theta = cos^{-1}[0.9183]](https://tex.z-dn.net/?f=%5Ctheta%20%20%3D%20cos%5E%7B-1%7D%5B0.9183%5D)
=> 
Generally for the bag not to slip , it means that the frictional force is equal to the sliding force

Hence
is mathematically represented as
While
is mathematically represented as

So
=>
=> 
Generally from the workdone equation we have that

Here
is the work done by friction which is mathematically represented as
Here s is the distance covered by the bag
is zero given that velocity at rest is zero
and

so

=> 
substituting 2.55 m/s for v_i and 0.350 for \mu_k we have that

=> 
Answer:
The giraffe is the tallest of all mammals. It reaches an overall height of 18 ft (5.5 m) or more. The legs and neck are extremely long. The giraffe has a short body, a tufted tail, a short mane, and short skin-covered horns
Answer:
High ceilings make a room feel large and open, but they can be difficult to cool and heat. Because hot air rises, the challenge becomes trying to keep the hot air where you want it and preventing if from being wasted where you don't.
Explanation:
:)
Answer:
P = VI = (IR)I = I2R
Explanation:
What the equation means is that if you double the current you end up with 4 times the power loss. It's like the area of carpet you need for a room - if you make the room twice as long and twice as wide you need 4x as much carpet. The physical explanation is that the voltage difference along a wire depends on the current - more current flowing with a resistance means more voltage (pressure of electricity if you like) is built up.
This extra voltage means more power. So if you double the current your would double the power, but you also double the voltage which doubles the power again = 4x as much power. P = VI = (IR)I = I2R
I hope this helps you out, if I'm wrong, just tell me.
For every actions, there is an opposite reaction.