The wavelength of the standing wave at fourth harmonic is; λ = 0.985 m and the frequency of the wave at the calculated wavelength is; f = 36.84 Hz
Given Conditions:
mass of string; m = 0.0133 kg
Force on the string; F = 8.89 N
Length of string; L = 1.97 m
1. To find the wavelength at the fourth normal node.
At the fourth harmonic, there will be 2 nodes.
Thus, the wavelength will be;
λ = L/2
λ = 1.97/2
λ = 0.985 m
2. To find the velocity of the wave from the formula;
v = √(F/(m/L)
Plugging in the relevant values gives;
v = √(8.89/(0.0133/1.97)
v = 36.2876 m/s
Now, formula for frequency here is;
f = v/λ
f = 36.2876/0.985
f = 36.84 Hz
Read more about Harmonics of standing waves at; brainly.com/question/10274257
#SPJ4
Answer:
except ii and iii
Explanation:
The angle of reflection is the angle to the normal the white rays strikes the water surface and it is the incidence angle. Since the white light is moving from less dense medium to a denser medium or a medium with a higher refractive index; the angle of refraction will be less than 30 degrees. Total internal reflection cannot occur because the white light is traveling from a less dense medium to a denser medium.
Denser materials tend to be closer to earths center due to their mass gravity is shown by the equation mg
Which stands for mass x gravity.
Stored energy=energy that is stored and may not be used, conservation of energy= saved energy that you can use for other things.
Answer:
Static friction: Keeps objects from sliding
Kinetic energy: Simply walking
Explanation: