Answer: A voltmeter must have a high resistance where as an ammeter must have a low resistance.
Explanation:
A voltmeter is a device which is connected in parallel to the component across which voltage needs to be measured. In a parallel circuit voltage drop is same at the nodes. The parallel connection must not offer easier path for current to divert from the main circuit and travel. Thus, a voltmeter must have high resistance.
On the other hand, an ammeter which is used to measure current in the circuit must have low resistance as it is connected in series. It should not offer resistance as it would reduce the actual current and measurement would be inaccurate.
1. A basketball was thrown in the air and falls to the ground
Answer:
1/2 Hz
Explanation:
A simple harmonic motion has an equation in the form of

where A is the amplitude,
is the angular frequency and
is the initial phase.
Since our body has an equation of x = 5cos(π t + π/3) we can equate
and solve for frequency f

f = 1/2 Hz
The wavelengths of the constituent travelling waves CANNOT be 400 cm.
The given parameters:
- <em>Length of the string, L = 100 cm</em>
<em />
The wavelengths of the constituent travelling waves is calculated as follows;

for first mode: n = 1

for second mode: n = 2

For the third mode: n = 3

For fourth mode: n = 4

Thus, we can conclude that, the wavelengths of the constituent travelling waves CANNOT be 400 cm.
The complete question is below:
A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent travelling waves CANNOT be:
A. 400 cm
B. 200 cm
C. 100 cm
D. 67 cm
E. 50 cm
Learn more about wavelengths of travelling waves here: brainly.com/question/19249186
445/100 - 5/4 = 445/100 - 125/100 = 320/100 = 16/5 = 3 1/5.