The molarity of solution made by dissolving 15.20g of i2 in 1.33 mol of diethyl ether (CH3CH2)2O is =0.6M
calculation
molarity =moles of solute/ Kg of the solvent
mole of the solute (i2) = mass /molar mass
the molar mass of i2 = 126.9 x2 = 253.8 g/mol
moles is therefore= 15.2 g/253.8 g/mol = 0.06 moles
calculate the Kg of solvent (CH3CH2)2O
mass = moles x molar mass
molar mass of (CH3CH2)2O= 74 g/mol
mass is therefore = 1.33 moles x 74 g/mol = 98.42 grams
in Kg = 98.42 /1000 =0.09842 Kg
molarity is therefore = 0.06/0.09842 = 0.6 M
Answer:
B: Increasing the volume inside the reaction chamber
Explanation:
Answer:
The answer to your question is letter C.
Explanation:
Reaction
Potassium hydroxide = KOH
Barium chloride = BaCl₂
Potassium chloride = KCl
Barium hydroxide = Ba(OH)₂
KOH + BaCl₂ ⇒ KCl + Ba(OH)₂
Reactant Elements Products
1 K 1
1 Ba 1
2 Cl 1
1 H 2
1 O 2
The reaction is unbalanced
2KOH + BaCl₂ ⇒ 2KCl + Ba(OH)₂
Reactant Elements Products
2 K 2
1 Ba 1
2 Cl 2
2 H 2
2 O 2
Now, the reaction is balanced
Answer:
49.86 × 10²³ atoms of Al
Explanation:
Given data:
Number of moles of Al = 8.28 mol
Number of atoms = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
For 8.28 moles of Al:
1 mole = 6.022 × 10²³ atoms of Al
8.28 mol×6.022 × 10²³ atoms / 1mol
49.86 × 10²³ atoms of Al