First solve the potential energy of the biker. using the fomula:
PE = mgh
where m is the mass of the object
g is the acceleration due to gravity ( 9.81 m/s2)
h is the height
PE = 96 kg ( 1120 m ) ( 9.81 m/s2)
PE = 1054771.2 J
then power = Work / time
P = 1054771.2 J / ( 120 min ) ( 60 s / 1 min)
P = 146.5 W
Kinetic friction happens when there is kinetic energy and it is coming into contact with another source. ex: a ball rolling.
Answer:
6m/s
Explanation:
V = frequency * wavelength
15 * 2.5 = 6m/s
Answer:
17.69 m
Explanation:
The time it takes the brick to strike the ground is 1.90 seconds.
We can apply one of Newton's equation of linear motion to find the height of the building:

where s = distance (in this case height)
u = initial velocity = 0 m/s
t = time = 1.90 s
g = acceleration due to gravity = 9.8 m/s^2
Therefore:
s = (0 * 1.9) + (0.5 * 9.8 * 1.9 * 1.9)
s = 0 + 17.68
s = 17.69 m
The height of the building is 17.69 m.