<span>the speed of a direction</span>
Ok, so you've got to figure out a force F and you have the speed in which the boxer punches on determinate time and the mass of the sheet of paper.
So based on the formula that says that the Force is equal to the mass multiplied by the acceleration => F=ma.
You look at it and see that you only have mass which is measured on KG so there is no problem.
then you have the acceleration which is measured on meters and is defined by: a = Δv/Δt
So now you can replace the velocity and the time you have there
⇒ a 25m/s / 0.05s
you have computing that ⇒ 50m because the seconds were cancelled out.
and then you plug the meters into the force equation.
F=(0.005kg)(50)
F=0.25N
so the boxer will have a force of 0.25 Newton's.
I am a competitive figure skater. There are certain turns you can use such as a mowhawk, where you set one foot down that is facing the opposite direction from which you are gliding. There is a two foot turn, where you either go on or toes and turn backwards, or lean somewhat on your heals and turn forwards. Use your hips to help turn. And a 3 turn, which is basically a 2 foot turn on 1 foot. But remember, it takes practice, and you may fall a couple times.
Answer:
evaporative crystallization
cooling crystallization from solution or the melt
Answer:
9.21954 m/s
54 m/s²
Angle is zero
Explanation:
r = Radius of arm = 1.5 m
= Angular velocity = 6 rad/s
The horizontal component of speed is given by

The vertical component of speed is given by

The resultant of the two components will give us the velocity of hammer with respect to the ground

The velocity of hammer relative to the ground is 9.21954 m/s
Acceleration in the vertical component is zero
Net acceleration is given by

Net acceleration is 54 m/s²
As the acceleration is towards the center the angle is zero.