<em>Paper chromatography is especially useful in characterizing amino acids. The different amino acids move at differing rates on the paper because of differences in their R groups.</em>
Friction. It transforms other forms of energy into thermal energy
Answer:
molarity of diluted solution = 1.25 M
Explanation:
Using,
C1V1 (Stock solution) = C2V2 (dilute solution)
given that
C1 = 2.50M
V1 = 250ML
C2 = ?
V2 = 500ML
2.50 M x 250 mL = C2 x 500 mL
C2 = (2.50 M x 250 mL) / 500 mL
C2 = 1.25 M
Hence, molarity of diluted solution = 1.25 M
First, we will convert the mass of the gallon to grams:
a gallon of water has a mass of 3.79 * 1000 = 3790 grams of water
number of moles can be calculated using the following rule:
number of moles = mass / molar mass
Therefore,
number of moles = 3790 / 18.02 = 210.32 moles
According to the PH formula:
PH= Pka +㏒ [strong base/weak acid]
when we have PH at the first equivalence =3.35 and the Pka1 = 1.4
So, by substitution, we can get the value of ㏒[strong base / weak acid]
3.35 = 1.4 + ㏒[strong base/ weak acid]
∴㏒[strong base/weak acid] = 3.35-1.4 = 1.95
to get the Pka2 we will substitute with the value of ㏒[strong base/ weak acid] and the value of PH of the second equivalence point
∴Pk2 = PH2 - ㏒[strong base/ weak acid]
= 7.55 - 1.95 = 5.6