<h3>Answer</h3>
1104 km/hour
<h3>Explanation</h3>
Distance between Dallas Texas to New York = 2760 km
Time the plane took from Dallas to New York = 2 hours
Time the plane took from New York back to Dallas = 2.5 hours
Formula to use
<h3>distance = speed x time </h3>
Speed the plane took from Dallas to New York
2760 = 2 x speed
speed = 2760 / 2
= 1380 km/hour
Speed the plane took from New York to Dallas (ROUND TRIP)
2760 = 2.5 x speed
speed = 2760 / 2.5
= 1104 km/hour
the Orbital Velocity is the velocity sufficient to cause a natural or artificial satellite to remain in orbit. Inertia of the moving body tends to make it move on in a straight line, while gravitational force tends to pull it down. The orbital path, elliptical or circular, representing a balance between gravity and inertia, and it follows a rue that states that the more massive the body at the centre of attraction is, the higher is the orbital velocity for a particular altitude or distance.
<h3><u>Answer</u>;</h3>
-The total momentum of an isolated system is constant.
-The total momentum of any number of particles is equal to the vector sum of the momenta of the individual particles.
-The vector sum of forces acting on a particle equals the rate of change of momentum of the particle with respect to time.
<h3><u>Explanation</u>;</h3>
- Momentum is a vector quantity, and therefore we need to use vector addition when summing together the momenta of the multiple bodies which make up a system.
- The vector sum of forces acting on a particle is equivalent to the rate of change of momentum of the particle with respect to time. This is according to the Newton's second Law of motion. In mathematical terms, ֿF = d ֿp/dt, that is F= ma.
- According to the Law of conservation of Momentum, or a collision occurring between object 1 and object 2 in an isolated system, the total momentum of the two objects before the collision is equal to the total momentum of the two objects after the collision.
To solve this problem we will apply the concepts related to the Force of gravity given by Newton's second law (which defines the weight of an object) and at the same time we will apply the Hooke relation that talks about the strength of a body in a system with spring.
The extension of the spring due to the weight of the object on Earth is 0.3m, then


The extension of the spring due to the weight of the object on Moon is a value of
, then

Recall that gravity on the moon is a sixth of Earth's gravity.




We have that the displacement at the earth was
, then


Therefore the displacement of the mass on the spring on Moon is 0.05m
My response to question (a) and (b) is that all of the element of the rope need to aid or support the weight of the rope and as such, the tension will tend to increase along with height.
Note that It increases linearly, if the rope is one that do not stretch. So, the wave speed v= √ T/μ increases with height.
<h3>How does tension affect the speed of a wave in a rope?</h3>
The Increase of the tension placed on a string is one that tends to increases the speed of a wave, which in turn also increases the frequency of any given length.
Therefore, My response to question (a) and (b) is that all of the element of the rope need to aid or support the weight of the rope and as such, the tension will tend to increase along with height. Note that It increases linearly, if the rope is one that do not stretch. So, the wave speed v= √ T/μ increases with height.
Learn more about tension from
brainly.com/question/2008782
#SPJ4
See full question below
(a) If a long rope is hung from a ceiling and waves are sent up the rope from its lower end, why does the speed of the waves change as they ascend? (b) Does the speed of the ascending waves increase or decrease? Explain.