Answer:
a) 
b) 
c) 
Explanation:
Given:
- voltage of the battery,

- energy storage capacity of the battery,

- speed of the car,

a)
power drawn by the car, 
<u>Now the Current delivered to the motor:</u>
we the relation between the power and electrical current,



b)
<u>Distance travelled before battery is out of juice:</u>
we first find the time before the battery runs out,



Now the distance:



c)
When the head light of 55 W power is kept on while moving then the power consumption of the car is:



<u>Now the time of operation of the car:</u>



<u>Now the distance travelled:</u>



Answer:
There are several options that the teacher can use to incorporate the concept into students' understanding.
Explanation:
1. The students can draw all the plants that they know.
2. Children can be asked to bring the flowers to school so that they can identify the plants themselves.
3. The children can plat the flowers in makeshift pots and then take the best plants and transplant them in the garden or elsewhere.
4. The children can take occasional trips and observe and record any changes to the plants.
4. The teacher can ask the students to draw the flowers and emphasize on the productive parts like the stamens, leaves, pistils, stems.
Do what?? i know how to do a lot of things to answer but there’s nothing to answer.♀️
Answer:
See below ↓
Explanation:
<u>Step 1 : Diagram</u>
<u>Step 2</u>
- We choose the system to be the spring, the block, and the Earth and it is isolated
- We put all the data in the figure we have created and create a zero level (initial height) of the block to be yₓ = 0 and the final position, when it stops and moves upwards again, to be yₙ = -A
- No external forces are exerted on the system and no energy comes in or out of the system
- Hence,
⇒ ΔE = 0
⇒ Eₙ - Eₓ = 0
⇒ Eₙ = Eₓ
⇒ Kₙ + Uₙ + Pₙ = Kₓ + Uₓ + Pₓ
- Final kinetic energy is 0 at the lowest point
⇒ Uₙ + Pₙ = Uₓ + Pₓ
<u>Step 3</u>
- Initial potential energy is 0 [zero level = initial height]
⇒ Uₙ + Pₙ = Uₓ
- And we know that spring was originally at normal length, so initial spring energy is also 0
⇒ Uₙ + Pₙ = 0
⇒ 1/2kxₙ² + mgyₙ = 0
⇒ 1/2kxₙ² = -mgyₙ
- We know xₙ = A and yₙ = -A from the diagram
⇒ 1/2kA² = -mg(-A)
⇒ 1/2kA² = mgA
⇒ [1/2kA = mg]
<u>Step 4</u>
- Spring force is given by : F = -kx
- Note : x = A
⇒ F = kA
⇒ k = F/A
⇒ Plug 'k' into the equation found at the end of Step 3
⇒ 1/2(F/A)(A) = mg
⇒ 2F = mg
⇒ F = 2mg (a)
<u>Step 5</u>
- We know the spring will stop oscillating and be at rest at the new equilibrium position of the system
⇒ F - mg = 0
⇒ F = mg
⇒ F = -kx
⇒ kyₙ = mg
⇒ yₙ = mg/k
⇒ yₙ = 0.25 x 9.8 / -10
⇒ yₙ = -0.245 m
⇒ yₙ = A
⇒ yₙ = 0.245 m (b)
<u>Step 6</u>
- v(max) = Aω
- v(max) = A√k/m
- v(max) = 0.245 x √(10/0.25)
- v(max) = 1.55 m/s (c)
The attraction between two objects is force.
As such, if you don't describe the degree of attraction
in units of force, you're doomed.
Whether to use micronewtons, millinewtons, newtons,
giganewtons, ounces, pounds, or tons, really depends on
the size of the force, which in turn depends on the masses
of the two objects and the distance between them. You'll
want to select the unit that produces the most convenient
number. And of course, you'll want to favor the SI units.