Well according to Newton’s first law of motion, a body will remain in the state of rest or linear motion provided that an *external force* has been applied. So no, a force doesn’t need to keep a body to remain in linear motion, because F=ma, during uniform linear motion velocity is constant, hence acceleration is zero, so F=0
I’m pretty sure it’s Radioactive decay
(1500 rev/min)(min / 60 s) / (3.0 s) = 8.33 rev/s²
<span>(B) </span>
<span>(1/2)(8.33 rev/s²)(3.0 s)² = 37.5 rev </span>
<span>(C) </span>
<span>(1500 rev/min)(min / 60 s)[2π(0.12 m) / rev] = 18.8 m/s</span>
Answer:
See explanation
Explanation:
We have to convert to angular velocity in rads-1 as follows;
Angular velocity in rad/s = 2π/60 × 1900 rpm = 199 rad/s
Given that
angular velocity =angle turned /time taken
Time taken = angle turned/angular velocity
Converting 35° to radians we have;
35 × π/180 = 0.61 radians
Time taken = 0.61 radians/199 rad/s
Time taken = 0.0031 seconds
Answer:
Atomic mass is defined as the number of protons and neutrons in an atom, where each proton and neutron has a mass of approximately 1 amu (1.0073 and 1.0087, respectively). The electrons within an atom are so miniscule compared to protons and neutrons that their mass is negligible.
I hope this is the answer you were looking for :D