1A: The legs can be a adjusted, as well as the sand can be swapped out. It’s a very good design for running multiple tests.
1B: He could add books or something under the front or back legs in order to increase/decrease the incline, therefore imitating the hypothesis.
1C: He can change out the sand grains to finer ones, or coarser ones, and record his results of each test.
2: If he sets the model at a steep incline and tests it with coarse sand and fine sand, seeing which one makes a narrower, deeper hole.
173.1f is the answer I believe, please let me know if I'm wrong then I would try to make up for it
Answer:
13.8 mol CO₂
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
Explanation:
<u>Step 1: Define</u>
8.32 × 10²⁴ molecules CO₂
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
<u />
= 13.816 mol CO₂
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
13.816 mol CO₂ ≈ 13.8 mol CO₂
By international agreement, absolute zero is defined as precisely; 0 K on the Kelvin scale, which is a thermodynamic (absolute) temperature scale; and –273.15 degrees Celsius on the Celsius scale.
Atmospheric pressure at sea level is 760 mmHg.
We have been told that at the summit the pressure is only one third the pressure at sea level.
Then the pressure at the mountain top is

mmHg
Air is made of a mixture of gases. the pressure that each gas exerts individually contributes to the total pressure of the system. The pressure that each gas exerts is the partial pressure of that gas which depends on the mole fraction of that gas or percentage composition of the individual gas.
Partial pressure of Oxygen - total pressure x percentage composition
Therefore pO₂ -

= 53.2 mmHg
Answer is 53 mmHg