Answer:
Kinetic
Explanation:
Kinetic energy kicks in after potienal builds up energy
The term mole refers to 6.02x10²³ atoms or molecules of any substance. so regardless of the substance one mole will always be equivalent to 6.02x10²³
Hope that helps
<span>Grid
The cathode serves as the positive terminal and the anode as the negative terminal. The flow of electrons is from the cathode to the anode.</span><span>The relationship between a cathode and an anode involves electrons. An example of this is reaction that takes place in an electrolytic cell. It has a cathode compartment, an anode compartment and a salt bridge that divides the compartment. The movement of electrons is from the cathode to the anode. </span>
Answer:
108.43 grams KNO₃
Explanation:
To solve this problem we use the formula:
Where
- ΔT is the temperature difference (14.5 K)
- Kf is the cryoscopic constant (1.86 K·m⁻¹)
- b is the molality of the solution (moles KNO₃ per kg of water)
- and<em> i</em> is the van't Hoff factor (2 for KNO₃)
We <u>solve for b</u>:
- 14.5 K = 1.86 K·m⁻¹ * b * 2
Using the given volume of water and its density (aprx. 1 g/mL) we <u>calculate the necessary moles of KNO₃</u>:
- 275 mL water ≅ 275 g water
- moles KNO₃ = molality * kg water = 3.90 * 0.275
- moles KNO₃ = 1.0725 moles KNO₃
Finally we <u>convert KNO₃ moles to grams</u>, using its molecular weight:
- 1.0725 moles KNO₃ * 101.103 g/mol = 108.43 grams KNO₃
You need to add the last substance to the products side(the right sode of the arrow). You have hydrogen and oxygen - water.
You get: BrO3 + N2H4 -> Br2 + N2 + H2O
# of Br: 1x1 = 1 # of Br: 2x1 = 2
O: 3x1 = 3 O: 1x1 = 1
N: 2x1 = 2 B N: 2x1 = 2
H: 4x1 = 4. H: 2x1 = 2
Br:
Multiply the reactant (left) side by 2 to balance.
O:
You've just multiplied the reactant oxygen by 2 so now the reactant side equals 6. Multiply the product (right) side by six as well.
H:
The product side is now equal to 12. Multiply the reactant side by 3 to balance.
N:
Now you have to balance N because the reactant side has been risen. So multiply the product side by three as well.
You end up with the complete and balanced equation:
2BrO3 + 3N2H4 -> Br2 + 3N2 + 6H2O