Answer:
big roux
Explanation:
heres the answer flimflam.shop
Answer:
The dissociation constant of phenol from given information is
.
Explanation:
The measured pH of the solution = 5.153

Initially c
At eq'm c-x x x
The expression of dissociation constant is given as:
![K_a=\frac{[C_6H_5O^-][H^+]}{[C_6H_5OOH]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BC_6H_5O%5E-%5D%5BH%5E%2B%5D%7D%7B%5BC_6H_5OOH%5D%7D)
Concentration of phenoxide ions and hydrogen ions are equal to x.
![pH=-\log[x]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5Bx%5D)
![5.153=-\log[x]](https://tex.z-dn.net/?f=5.153%3D-%5Clog%5Bx%5D)



The dissociation constant of phenol from given information is
.
Answer:
They are solid (with the exception of mercury, Hg, a liquid).
They are shiny, good conductors of electricity and heat.
They are ductile (they can be drawn into thin wires).
They are malleable (they can be easily hammered into very thin sheets).
If this satisfies you please consider giving me brainliest :)
Answer:
The net ionic equation will be MgCl₂ + 2 NaOH → Mg(OH)₂ + 2 NaCl
Explanation:
Ionization of MgCl₂ is as follows
MgCl₂ → Mg²⁺ + 2 Cl⁻
Ionization of NaOH is as follows
NaOH → Na⁺ + OH⁻
It is a one type of substitution reaction where OH⁻ combined with Mg²⁺ to give magnesium hydroxide .
On the other hand Cl⁻ combined with Na⁺ to give sodium chloride as product.
Using proper stoichiometry to balanced the number of atoms in both side .
We know that:
number of moles (n) = mass / molar mass
Now, from the general law of gases:
PV = nRT
where:
P is the pressure = 500 torr = 0.65 atm
V is the volume
n is the number of moles
R is the gas constant = 0.082
T is the temperature = 300 k
We will just rearrange this equation as follows:
P = nRT / V
Then we will substitute n with its equivalent equation mentioned at the beginning:
P = (mass x R x T) / (volume x molar mass) ......> equation I
Now, we know that:
density = mass / volume
We will substitute (mass/volume) in equation I with density as follows:
P = (density x R x T) / molar mass
Rearrange this equation to get the mass as follows:
molar mass = <span>dRT/P = (0.216 x 0.082 x 300) / 0.65 = 8.4738 grams
</span>
From the periodic table:
molecular mass of hydrogen = 1 grams
molecular mass of nitrogen = 14 grams
Therefore:
molar mass of hydrogen = 2 x 1 = 2 grams
molar mass of nitrogen = 2 x 14 = 28 grams
We can assume that the number of moles of of each element is y.
We can thus build up the following equation:
2y + 28y = 8.4738
30y = 8.4738
y = 0.28246
Therefore:
mole fraction of hydrogen = 2 x 0.28246 = 0.56492
mole fraction of nitrogen = 28 x 0.28246 = 7.90888