Answer:
<em>The body flies off to the left at 9.1 m/s</em>
Explanation:
<u>Law Of Conservation Of Linear Momentum
</u>
It states the total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is
P=mv.
If we have a system of bodies, then the total momentum is the sum of the individual momentums:

If a collision occurs and the velocities change to v', the final momentum is:

Since the total momentum is conserved, then:
P = P'
In a system of two masses, the equation simplifies to:
![m_1v_1+m_2v_2=m_1v'_1+m_2v'_2\qquad\qquad[1]](https://tex.z-dn.net/?f=m_1v_1%2Bm_2v_2%3Dm_1v%27_1%2Bm_2v%27_2%5Cqquad%5Cqquad%5B1%5D)
Wall-E robot is initially at rest, its two parts together. His head has a mass of m1=0.75 kg and his body has a mass of m2=6.2 kg. Both parts have initial speeds of zero v1=v2=0.
After the explosion, his head flies off to the right at v1'=75 m/s. We are required to find the speed of his body v2'. Solving [1] for v2':

Substituting values:


The body flies off to the left at 9.1 m/s
Answer:
The distance covered is 40 m and the displacement is 31,6m.
Explanation:
The distance covered is the sum of the two distances (10+30). The displacement is equal to the distance of the hipotenusa of the triangle that the two distances (10 m to north and 30m to east) create. Using the Pythagoras theorem the displacent is equal to the Square root of (30^2 +10^2) .
A force is a push or pull upon an object resulting from the object's interaction with another object. Whenever there is an interaction between two objects, there is a force upon each of the objects. When the interaction ceases, the two objects no longer experience the force. Forces only exist as a result of an interaction
Answer:
The car will travel a distance of 17.45 meters.
Explanation:
Given:
Initial velocity
= 0
Final velocity
= 7.6 m/s
Time taken = 4.6 s
Acceleration = (Final velocity - Initial Velocity )/time

We have to calculate total distance traveled by the car.
Let the distance traveled be 'd'
Equation of motion:

Plugging the values.
⇒
⇒
⇒
The car will travel a distance of 17.45 meters for the above case.
If the force is removed, then there are no other forces acting on the object, the object will continue to move at constant velocity, meaning that it would move in a line tangent to the circular path.