Answer:
1.5 m/s²
Explanation:
For the block to move, it must first overcome the static friction.
Fs = N μs
Fs = (45 N) (0.42)
Fs = 18.9 N
This is less than the 36 N applied, so the block will move. Since the block is moving, kinetic friction takes over. To find the block's acceleration, use Newton's second law:
∑F = ma
F − N μk = ma
36 N − (45 N) (0.65) = (45 N / 9.8 m/s²) a
6.75 N = 4.59 kg a
a = 1.47 m/s²
Rounded to two significant figures, the block's acceleration is 1.5 m/s².
Usually the coefficient of static friction is greater than the coefficient of kinetic friction. You might want to double check the problem statement, just to be sure.
Answer:
the distance traveled by the fish is 3648 m
Explanation:
In general, animals have a small period of acceleration, which we will despise after which they travel at a constant speed so we can use the kinematic equations in uniform motion
We reduce the units to System SI
t = 2 min (60s / 1 min) = 120 s
Calculate
V = x / t
x= V t
x = 30.4 120
x = 3648 m
This is the distance traveled by the fish
1) It is because they produce a lot of pollution in the atmosphere
2) They are limited in number and can't be recycled
Hope this helps!
Anemometer, Psychrometer, <span>Barometer</span>
Path 2.
Displacement is the direction and magnitude of an object from its starting point, so path 2 is the direct route you would need to take to find direction and magnitude.