0.000132 g of hydrated sodium borate (Na₂B₄O₇ · 10 H₂O)
Explanation:
First we need to find the number of moles of sodium borate (Na₂B₄O₇) in the solution:
molar concentration = number of moles / volume (L)
number of moles = molar concentration × volume (L)
number of moles of Na₂B₄O₇ = 0.1 × 0.5 = 0.05 moles
We know now that we need 0.05 moles of hydrated sodium borate (Na₂B₄O₇ · 10 H₂O) to make the solution.
Now to find the mass of hydrated sodium borate we use the following formula:
number of moles = mass / molar weight
mass = number of moles × molar weight
mass of hydrated sodium borate = 0.05 / 381 = 0.000132 g
Learn more about:
molar concentration
brainly.com/question/14106518
#learnwithBrainly
<em><u>examples of metalloids :
</u>Boron,Silicon ,Germanium are some metalloids ...
<u>what they do:
</u>they are used to form the semiconductors and these semiconductors are used in modern computer technology like in circuits ,chips and computer based gadgets... :) <u>
</u></em>
Answer:
<h2>14.85 moles </h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>14.85 moles</h3>
Hope this helps you
Voltage<span>, </span>also called<span> electromotive force, is a quantitative expression of the potential difference in charge between two points in an electrical field.
So ACTUALLY an "electromotive force", but of your answer choices.
D. Electrical Field Energy
</span>
Answer:
water moves through diffusion