Oxygen and glucose and energy. <span />
Answer:
The entropy change in the environment is 3.62x10²⁶.
Explanation:
The entropy change can be calculated using the following equation:

Where:
Q: is the energy transferred = 5.0 MJ
: is the Boltzmann constant = 1.38x10⁻²³ J/K
: is the initial temperature = 1000 K
: is the final temperature = 500 K
Hence, the entropy change is:
Therefore, the entropy change in the environment is 3.62x10²⁶.
I hope it helps you!
C. Summarizing
He read the book, then summarized what he read in his report.
a. 381.27 m/s
b. the rate of effusion of sulfur dioxide = 2.5 faster than nitrogen triiodide
<h3>Further explanation</h3>
Given
T = 100 + 273 = 373 K
Required
a. the gas speedi
b. The rate of effusion comparison
Solution
a.
Average velocities of gases can be expressed as root-mean-square averages. (V rms)

R = gas constant, T = temperature, Mm = molar mass of the gas particles
From the question
R = 8,314 J / mol K
T = temperature
Mm = molar mass, kg / mol
Molar mass of Sulfur dioxide = 64 g/mol = 0.064 kg/mol

b. the effusion rates of two gases = the square root of the inverse of their molar masses:

M₁ = molar mass sulfur dioxide = 64
M₂ = molar mass nitrogen triodide = 395

the rate of effusion of sulfur dioxide = 2.5 faster than nitrogen triodide
Explanation:
2Mg⁺ 2HNO₃ = Mg(NO₃)₂ + H₂