Answer:
86.735 kJ
Explanation:
Simply multiply the change in temperature by the Ccal;
(36.6 - 20.0)×5.225 = 86.735
Atomic mass of helium is 4.002642g/mol
(542000g)/(4.002642g/mol)*6.02*10^23 = 8.15*10^28 atoms
The first step is to balance the equation:
<span>C3H8 + 5O2 ---> 3CO2 + 4H2O
Check the balance
element left side right side
C 3 3
H 8 4*2 = 8
O 5*2=10 3*2 + 4 = 10
Then you have the molar ratios:
3 mol C3H8 : 5 mol O2 : 3 mol CO2 : 4 mol H2O
Now you have 40 moles of O2 so you make the proportion:
40.0 mol O2 * [3 mol CO2 / 5 mol O2] = 24.0 mol CO2.
Answer: option D. 24.0 mol CO2
</span>
Answer:
12.10 mol / 1 L
Explanation:
Molarity of a substance , is the number of moles present in a liter of solution .
M = n / V
M = molarity ( unit = mol / L or M )
V = volume of solution in liter ( unit = L ),
n = moles of solute ( unit = mol ),
Moles is denoted by given mass divided by the molecular mass ,
Hence ,
n = w / m
n = moles ,
w = given mass ,
m = molecular mass .
From the question ,
The data given is as follows -
w = 439 g
As , we known for HCl ,
m = 36.46 g/mol
V = 1 L
From the above data ,
Moles are given as -
n = w / m
n = 439 / 36.26 = 12.10 mol ,
Now , the molarity is given as ,
M = n / V
M = 12.10 mol / 1 L
M = 12.10 mol /L
Answer:
Gravitational force of attraction.
Explanation:
When two bodies of masses 'm' and 'M' are separated by a distance 'r', then both the bodies experience a force of attraction towards each other. This force of attraction is called gravitational force. It is a weak force but it always act between two bodies that have mass.
The magnitude of the gravitational force is directly proportional to product of the masses and inversely proportional to the square of the distance between the masses.
This means that as the distance between the bodies is increases, the gravitational force between the bodies decreases and vice versa.
The gravitational force of attraction is given as:
