To solve this problem we will derive the expression of the precession period from the moment of inertia of the given object. We will convert the units that are not in SI, and finally we will find the precession period with the variables found. Let's start defining the moment of inertia.

Here,
M = Mass
R = Radius of the hoop
The precession frequency is given as

Here,
M = Mass
g= Acceleration due to gravity
d = Distance of center of mass from pivot
I = Moment of inertia
= Angular velocity
Replacing the value for moment of inertia


The value for our angular velocity is not in SI, then


Replacing our values we have that


The precession frequency is




Therefore the precession period is 5.4s
Answer:

Explanation:
c = Speed of wave
= Density of medium
A = Area
= Frequency

Intensity of sound is given by

So,

We get

The ratio is 
Answer:
it will not change
Explanation:
if the forces are of equal force then there would be no movement because one force was not stronger to move it
True statements that reflect why infants experience more fluid and electrolyte changes are that dehydration can upset the balance of electrolytes in an infant or child and the newborn is at risk of excessive water loss and hypernatremia as the result of high evaporative water loss through the skin.
As infants are not used to the environment around , they are more sensible towards problems such as Dehydration because of fast metabolism.
Dehydration can upset the balance of electrolytes in an infant or child. Children are especially vulnerable to dehydration due to their small size and fast metabolism, which causes them to replace water and electrolytes at a faster rate than adults.
Infants are particularly prone to the effects of dehydration because of their greater baseline fluid requirements (due to a higher metabolic rate), higher evaporative losses (due to a higher ratio of surface area to volume), and inability to communicate thirst or seek fluid.
The newborn is at risk of excessive water loss and hypernatremia as the result of high evaporative water loss through the skin, insensible water loss (IWL), as well as decreased capacity to concentrate the urine.
To Learn more about dehydration here
brainly.com/question/12261974?referrer=searchResults
#SPJ4
The density of the block is 1.25 cm³
The correct answer to the question is Option B. 1.25 cm³
To solve this question, we'll begin by calculating the volume of the block. This can be obtained as follow:
Length = 7 cm
Height = 4 cm
Width = 3 cm
<h3>Volume =? </h3>
Volume = Length × Width × Height
Volume = 7 × 3 × 4
<h3>Volume = 84 cm³</h3>
Thus, the volume of the block is 84 cm³
Finally, we shall determine the density of the block. This can be obtained as follow:
Density is defined as mass per unit volume i.e

Mass of block = 105 g
Volume of block = 84 cm³
<h3>Density of block =? </h3>

<h3>Density of block = 1.25 cm³</h3>
Therefore, the density of the block is 1.25 cm³.
Hence, Option B. 1.25 cm³ gives the correct answer to the question.
Learn more: brainly.com/question/2040396?referrer=searchResults