1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andreas93 [3]
3 years ago
13

Describe the flow of energy that causes heat to be produced

Physics
1 answer:
Neporo4naja [7]3 years ago
7 0
It may be produced by 
<span>Most of us use the word ‘heat’ to mean something that feels warm, but science defines heat as the flow of energy from a warm object to a cooler object.</span><span>Actually, heat energy is all around us – in volcanoes, in icebergs and in your body. All matter contains heat energy.</span><span>Heat energy is the result of the movement of tiny particles calledatoms, molecules or ions in solids, liquids and gases. Heat energy can be transferred from one object to another, and the transfer or flow due to the difference intemperature between the two objects is called heat.</span><span>For example, an ice cube has heat energy and so does a glass of lemonade. If you put the ice in the lemonade, the lemonade (which is warmer) will transfer some of its heat energy to the ice. In other words, it will heat up the ice. Eventually, the ice will melt and the lemonade and water from the ice will be the same temperature. This is known as reaching a state of thermal equilibrium.</span>Moving particles<span>Matter is all around you. It is everything in the universe – anything that has both mass andvolume and takes up space is matter. Matter exists in different physical forms – solids, liquids and gases.</span>All matter is made of tiny particles called atoms, molecules and ions. These tiny particles are always in motion – either bumping into each other or vibrating back and forth. It is the motion of particles that creates a form of energy called heat (or thermal) energy that is present in all matter.<span>Image: Particles in collision</span>The particles in solids are tightly packed and can only vibrate. The particles in liquids also vibrate but are able to move around by rolling over each other and sliding around. In gases, the particles move freely with rapid, random motion.Transferring heat energy – particles in collision<span>At higher temperatures, particles have more energy. Some of this energy can be transmitted to other particles that are at a lower temperature. For example, in the gas state, when a fast moving particle collides with a slower moving particle, it transfers some of its energy to the slower moving particle, increasing the speed of that particle.</span><span>With billions of moving particles colliding into each other, an area of high energy will slowly transfer across the material until thermal equilibrium is reached (the temperature is the same across the material).</span>Changing states by heat transferFaster moving particles ‘excite’ nearby particles. If heated sufficiently, the movement of particles in a solid increases and overcomes the bonds that hold the particles together. The substance changes its state from a solid to a liquid. If the movement of the particles increases further in the liquid, then a stage is reached where the substance changes into a gas.Three ways of transferring heat energy<span><span>All heat energy, including heat generated by fire, is transferred in different ways:<span><span>Image: Convection</span><span>Image: Conduction</span><span>Image: Radiation</span></span></span><span>Convection transfers heat energy through the air (and liquids). As the air heats up, the particles move further apart and become less dense, which causes the air to rise. Cooler air below moves in and heats up, creating a circular motion. The warm air circles and heats the room.</span><span>Conduction transfers heat energy through one substance to another when they are in direct contact. The moving molecules of a warm material can increase the energy of the molecules in a cooler material. Since particles are closer together, solids conduct heat better than liquids or gases.</span><span><span>Radiation is the heat that we feel coming from a hot object. It warms the air using heat waves (infrared waves) that radiate out from the hot object in all directions until it is absorbed by other objects. Transfer of heat byradiation travels at the speed of light and goes great distances.</span><span>With a log fire, the air in the room above the fire is heated and rises to create convection currents. The heat felt directly from the fire is transmitted to us through radiation. Conduction helps to keep a fire going by transferring heat energy directly from the wood to neighbouring wood in the fire</span></span></span>An effect of heat – expansion<span>When gases, liquids and solids are heated, they expand. As they cool, they contract or get smaller. The expansion of the gases and liquids is because the particles are moving around very fast when they are heated and are able to move further apart so they take up more room. If the gas or liquid is heated in a closed container, the particles collide with the sides of the container, and this causes pressure. The greater the number of collisions, the greater the pressure.</span><span>Sometimes when a house is on fire, the windows will explode outwards. This is because the air in the house has been heated and the excited molecules are moving at high speed around the room. They are pushing against the walls, ceiling, floor and windows. Because the windows are the weakest part of the house structure, they break and burst open, releasing the increased pressure.</span>
You might be interested in
R = (2+2+1) i - (t+1)] + t3 k<br> what is the direction of initial velocity
Wittaler [7]

Answer:

In the - j direction, that is negative of the y-axis

Explanation:

As typed in the question, the position of the object is given by the expression in three component ( i, j, k) form:

r (t) = 5  i  - (t + 1 )  j  + t^3  k

and since the velocity is the derivative of position with respect to time, by doing the derivative of this expression we get:

v(t) = 0  i  -  1  j   +3 t^2  k

which for the initial velocity requested (that is at time zero) we have:

v(t) = 0  i  -  1  j   +3 (0)^2  k = = 1  j

Then the direction of the initial velocity is entirely in the direction of the j versor, that is pointing to the negative of the y-axis.

4 0
3 years ago
A uniformly charged ring of radius 10.0 cm has a total charge of 50.0 μC Find the electric field on the axis of the ring at 30.0
Grace [21]

Answer: 4.27 *10^6 N/C

Explanation: In order to calculate the electric field along the axis of charged ring we have to use the following expression:

E=k*x/(a^2+x^2)^3/2    where a is the ring radius and x the distance to the point measured from the center of the ring.

Replacing the data we have:

E= (9* 10^9* 0.3* 50 * 10^-6)/(0.1^2+0.3^2)^3/2

then

E=4.27 * 10^6 N/C

8 0
3 years ago
What clues are useful in reconstructing pangaea
Gnoma [55]
You can use map and notice one thinh. If you flipp over the edges of continents and put them together, you will get a big single continent that is called pangaea. Practically it's impossible but it could be imagined.
6 0
3 years ago
Read 2 more answers
A man on the moon with a mass of 90 kilograms weighs 146 newtons. The radius of the moon is 1.74 x 106 meters, find the mass of
melisa1 [442]

Answer:

7.36 × 10^22 kg

Explanation:

Mass of the man = 90kg

Weight on the moon = 146N

radius of the moon =1.74×10^6

Weight =mg

g= weight/mass

g= 146/90 = 1.62m/s^2

From the law of gravitational force

g = GM/r^2

Where G = 6.67 ×10^-11

M = gr^2/G

M= 1.62 × (1.74×10^6)^2/6.67×10^-11

= 4.904×10^12/6.67×10^-11

=0.735×10^23

M= 7.35×10^22kg. (approximately) with option c

3 0
3 years ago
Read 2 more answers
Use the velocity vs time graph to analyze the motion of the object.
arsen [322]

Explanation:

the object has constant velocity for 2 seconds and it get a constant accelration (2ms-2)

7 0
3 years ago
Other questions:
  • An object is thrown upward from the top of a 128​-foot building with an initial velocity of 112 feet per second. The height h of
    10·1 answer
  • A vertebra is subjected to a shearing force of 535 N. Find the shear deformation, taking the vertebra to be a cylinder 3.00 cm h
    6·1 answer
  • A scientist in central Nebraska is studying factors that affect the formation of tornadoes. How might the scientist benefit from
    13·2 answers
  • A chain lying on the ground is 11 meters long and its mass is 95 kilograms. The chain is threaded through a pulley, which is fix
    15·1 answer
  • When light waves hit ice, most of them bounce off and radiate back into space. Because of this, it can be said that ice is a(n)
    8·2 answers
  • Intervals of paleomagnetic ___________ is/are characterized by the alignment of the magnetic south pole and the geographic north
    5·1 answer
  • Give an example of a situation where you could use a cost/ benefit analysis. Be sure to explain at least one cost and one benefi
    6·1 answer
  • A dog walks a distance of 55.5 meters in 120 seconds. What was its speed?
    11·1 answer
  • A car starts moving after waiting for a traffic light to turn green. It is able to travel a distance of 300 meters in 10 seconds
    14·2 answers
  • Calcula qué tan lejos está Saturno del Sol, sabiendo que la luz solar necesita una hora y veinte segundos para llegar a Saturno.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!