Answer:
2Na + Br2 = 2NaBr
Explanation:
In order to balance a chemical equation you make the make sure both sides have the same number of atoms on each side, you do this by multiplying on both sides as if it was a algebraic equation.
Na+ Br2 = NaBr
Na × 2 = Na2
Na × 2 = Na2
Br × 2 = Br2
2Na + Br2 = 2NaBr
Hope this helps.
Answer:

Explanation:
Solubility product is defined as the equilibrium constant in which a solid ionic compound is dissolved to produce its ions in solution. It is represented as
The equation for the ionization of magnesium phosphate is given as:
When the solubility of
is S moles/liter, then the solubility of
will be 3S moles\liter and solubility of
will be 2S moles/liter.
Thus S = 0.173 g/L or

The way you calculate the empirical formula is to firstly assume 100g. To find each elements moles you take each elements percentage listed, times it by one mole and divide it by its atomic mass. (ex: moles of K =55.3g x 1 mole/39.1g, therefore there is 1.41432225 moles of Potassium) Once you’ve completed this for every element you list each elements symbol beside it’s number of moles and divide by the smallest number because it can only go into its self once. After you’ve done this, you’ve found your empirical formula, which is the simplest whole number ratio of atoms in a compound. I’ve added an example of a empirical question I completed last semester :)
Gas x would be carbon dioxide.
note/ acid + carbonate —> salt + water + carbon dioxide
the white precipitate would be calcium carbonate. CaCo₃
note/ this is a common eqn u need to remember.
X - CO₂ (carbón dioxide)
Y - CaCo₃ (calcium carbonate)
sodium carbonate is a basic salt
In the electron cloud model, the atoms are in unpredicted places. But in the Bohr model, atoms are in "rows"