Answer:
E = 5.69x10⁻²⁸m
Explanation:
To solve this question we neeed to convert the wavelength in meters to energy in joules using the equation:
E = hc / λ
<em>Where E is energy in joules, h is Planck's constant = 6.626x10⁻³⁴Js</em>
<em>c is light constant = 3.0x10⁸m/s</em>
<em>And λ is wavelength in meters = 349m</em>
Replacing:
E = 6.626x10⁻³⁴Js*3.0x10⁸m/s / 349m
E = 5.69x10⁻²⁸m
Explanation:
The use of microorganism in our day to day life is making medicine.
The suggestion is to prevent a puddle of the liquid present in the sample from forming or from it leaking on to the surface on which it is placed. For example, if precipitates of a solid are removed from water and then placed on filter paper to dry, the water will soak into the filter paper and then leak on to the counter on which it is placed. If this precipitate were placed in a watch glass or weighing paper, the water would only evaporate and would not contaminate the sample.
Answer:
0.55 atm
Explanation:
First of all, we need to calculate the number of moles corresponding to 1.00 g of carbon dioxide. This is given by

where
m = 1.00 g is the mass of the gas
Mm = 44.0 g/mol is the molar mass of the gas
Substituting,

Now we can find the pressure of the gas by using the ideal gas law:

where
p is the gas pressure
V = 1.00 L is the volume
n = 0.0227 mol is the number of moles
R = 0.082 L/(atm K mol) is the gas constant
T = 25.0 C + 273 = 298 K is the temperature of the gas
Solving the formula for p, we find

B. carbon because it's atomic number is 6