Ewdrqw3ecdr4qwe4rfwqefq343rfqweftrweqf
I would assume carbon and water if not Im sorry.
Answer:
We need 0.375 mol of CH3OH to prepare the solution
Explanation:
For the problem they give us the following data:
Solution concentration 0,75 M
Mass of Solvent is 0,5Kg
knowing that the density of water is 1g / mL, we find the volume of water:

Now, find moles of
are needed using the molarity equation:
therefore the solution is prepared using 0.5 L of H2O and 0.375 moles of CH3OH, resulting in a concentration of 0,75M
3.62x10^24/ 6.02x10^23= 6.013 moles to 3dp
Answer:
D. ionic sodium phosphate (Na3PO4)
Explanation:
Molecule for molecule, the solute that raises the boiling point of water the most is the one that makes the most particles in the solution. Lithium chloride breaks up into two ions (Li+ and Cl-). So does sodium chloride (Na+ and Cl-). Molecular molecules don't break up at all, so sucrose has only 1 particle per molecule. Sodium phosphate makes 4 total particles (3 Na+ ions and 1 PO4^3-). And magnesium bromide would make 3 particles (1 Mg2+ and 2 Br-). So the most is 4.