The question is incomplete, here is the complete question:
Calculate the pH of a solution prepared by dissolving 0.370 mol of formic acid (HCO₂H) and 0.230 mol of sodium formate (NaCO₂H) in water sufficient to yield 1.00 L of solution. The Ka of formic acid is 1.77 × 10⁻⁴
a) 2.099
b) 10.463
c) 3.546
d) 2.307
e) 3.952
<u>Answer:</u> The pH of the solution is 3.546
<u>Explanation:</u>
We are given:
Moles of formic acid = 0.370 moles
Moles of sodium formate = 0.230 moles
Volume of solution = 1 L
To calculate the molarity of solution, we use the equation:

To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:
![pH=pK_a+\log(\frac{[salt]}{[acid]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D%29)
![pH=pK_a+\log(\frac{[HCOONa]}{[HCOOH]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5BHCOONa%5D%7D%7B%5BHCOOH%5D%7D%29)
= negative logarithm of acid dissociation constant of formic acid = 3.75
![[HCOOH]=\frac{0.370}{1}](https://tex.z-dn.net/?f=%5BHCOOH%5D%3D%5Cfrac%7B0.370%7D%7B1%7D)
pH = ?
Putting values in above equation, we get:

Hence, the pH of the solution is 3.546
Answer: I found this online. Hope it helps you.
Explanation:
This pressure is transmitted throughout the liquid and makes it more difficult for bubbles to form and for boiling to take place. If the pressure is reduced, the liquid requires less energy to change to a gaseous phase, and boiling occurs at a lower temperature.
The atomic number of an atom is determined by the number of protons it has..
It is also the whole number shown on the periodic table
Answer:
i picked b
Explanation:
but its based on your own opinion, good luck.
Answer:
Petrochemicals are chemical products derived from petroleum, although many of the same chemical compounds are also obtained from other fossil fuels such as coal and natural gas or from renewable sources such as corn, sugar cane, and other types of biomass.