Answer:
a.) 1567.2 m/s
b.) 149.4 m/s
Explanation:
Given that a 26 kg body is moving through space in the positive direction of an x axis with a speed of 350 m/s when, due to an internal explosion, it breaks into three parts. One part, with a mass of 7.8 kg, moves away from the point of explosion with a speed of 180 m/s in the positive y direction. A second part, with a mass of 8.8 kg, moves in the negative x direction with a speed of 640 m/s.
The x-component of the third part can be calculated by assuming that it moves in a positive x axis.
The third mass = 26 - ( 7.8 + 8.8)
The third mass = 26 - 16.6
The third mass = 9.4kg
since momentum is conserved, the momentum before explosion will be equal to sum of the momentum after explosion
26 x 350 = -8.8 x 640 + 9.4V
9100 = -5632 + 9.4V
9.4V = 9100 + 5632
9.4V = 14732
V = 14732/9.4
V = 1567.2 m/s
(b) y-component of the velocity of the third part will be
7.8 x 180 = 9.4 V
1404 = 9.4V
V = 1404/9.4
V = 149.4 m/s
Answer:
Rocket Center of Gravity. As a rocket flies through the air, it both translates and rotates. The rotation occurs about a point called the center of gravity. The center of gravity is the average location of the weight of the rocket.
Answer:
xf = 5.68 × 10³ m
yf = 8.57 × 10³ m
Explanation:
given data
vi = 290 m/s
θ = 57.0°
t = 36.0 s
solution
firsa we get here origin (0,0) to where the shell is launched
xi = 0 yi = 0
xf = ? yf = ?
vxi = vicosθ vyi = visinθ
ax = 0 ay = −9.8 m/s
now we solve x motion: that is
xf = xi + vxi × t + 0.5 × ax × t² ............1
simplfy it we get
xf = 0 + vicosθ × t + 0
put here value and we get
xf = 0 + (290 m/s) cos(57) (36.0 s)
xf = 5.68 × 10³ m
and
now we solve for y motion: that is
yf = yi + vyi × t + 0.5 × ay × t
² ............2
put here value and we get
yf = 0 + (290 m/s) × sin(57) × (36.0 s) + 0.5 × (−9.8 m/s2) × (36.0 s) ²
yf = 8.57 × 10³ m