Answer:
The mass of 0.02 m³ of gold is 386 kilograms
Explanation:
Given:
The density of the gold = 19300 kg/m³.
The volume of gold = 0.02 m³
To Find:
The mass of gold = ?
Solution:
We know that density is mass divided per unit volume.
Thus mathematically
Density = \frac{mass}{volume}Density=
volume
mass
Rewriting in terms of mass ,
Mass = density * volume
On substituting the known values
Mass = 19300 kg/m³ * 0.02 m³
Mass = 386 kilograms
Learn more about Mass and Density:
Mass=?,volume=190,density=4
Mass 350 kg volume 175 density ans
This is not my answer I copied it but hope it helps:)
Answer:
The answer would be melting point.
Explanation:
Hope this helps. Can you please mark me brainliest
Answer:
c. turn downward
Explanation:
From the information given:
To find the tendency of the sander;
We need to apply the right-hand rule torque; whereby we consider the direction of the flywheel, the direction at which the torque is acting, and the movement of the sander toward the right.
Since the flywheel of the sander is in counterclockwise movement, hence the torque direction will be outward placing on the wall. However, provided that the movement of the sander is toward the right, then there exists an opposite force that turns downward which showcases the tendency in the sander is downward.
First method
initial distance = 16m
final distance= 43 m
total distance covered= final -initial
=43m -16m
=27m
Second method
Si= 16m
Sf =43 m
t= 12 s
first we will find V
V = (Sf-Si)/ t
V =( 43- 16)/ 12
V = 27/12 ⇒ V= 9/4
V= distance / time
distance= V×time
distance = (9/4) ×12
distance =27
Energy flows with kinetic energy